Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Soil Spiking and Soil Washing
2.3. Synthesis and Characterization of nZVI and SiO2/nZVI
2.4. PAHs Degradation in Soil Washing Effluents
2.5. Analytical Method
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Characterization of nZVI and SiO2/nZVI
3.2. The Washing Efficiencies of PAHs
3.3. Effect of the DegradationTime
3.4. Effect of the Source of Iron
3.5. Effect of the Dosage of SiO2/nZVI
4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009, 172, 532–549. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.M.; Afriyie-Gyawu, E.; Huebner, H.; Marroquin-Cardona, A.; Robinson, A.; Tang, L.; Xu, L.; Ankrah, N.A.; Ofori-Adjei, D.; Jolly, P.E.; et al. PAH exposure in a Ghanaian population at high risk for aflatoxicosis. Sci. Total Environ. 2009, 407, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Kim, K.H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Flotron, V.; Delteil, C.; Padellec, Y.; Camel, V. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 2005, 59, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, M.M.; Dobson, A.D.W.; Barnes, J.D.; Singleton, I. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 2006, 63, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.Y.; Mo, C.H.; Wu, Q.T.; Zeng, Q.Y.; Katsoyiannis, A.; Férard, J.F. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes. J. Hazard. Mater. 2007, 142, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Bishop, P.L. Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environ. Sci. Technol. 2007, 41, 7107–7113. [Google Scholar] [CrossRef] [PubMed]
- Chair, K.; Bedoui, A.; Bensalah, N.; Fernández-Morales, F.J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. J. Chem. Technol. Biot. 2016, 92, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Chair, K.; Bedoui, A.; Bensalah, N.; Sáez, C.; Fernández-Morales, F.J.; Cotillas, S.; Cañizares, P.; Rodrigo, M.A. Treatment of soil-washing effluents polluted with herbicide oxyfluorfen by combined biosorption–electrolysis. Ind. Eng. Chem. Res. 2017, 56, 1903–1910. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Maza-Márquez, P.; Martinez-Toledo, M.V.; Fenice, M.; Andrade, L.; Lasserrot, A. Gonzalez-Lopez, Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int. Biodeter. Biodeger. 2014, 88, 69–76. [Google Scholar] [CrossRef]
- Lopez-Vizcaíno, R.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Sep. Purif. Technol. 2012, 98, 88–93. [Google Scholar] [CrossRef]
- Fabbri, D.; Crime, A.; Davezza, M.; Medana, C.; Baiocchi, C.; Prevot, A.B.; Pramauro, E. Surfactant-assisted removal of swep residues from soil and photocatalytic treatment of the washing wastes. Appl. Catal. B-Environ. 2009, 92, 318–325. [Google Scholar] [CrossRef]
- Pardo, F.; Rosas, J.M.; Santos, A.; Romero, A. Remediation of a biodiesel blend-contaminated soil with activated persulfate by different sources of iron. Water Air Soil Pollut. 2015, 226, 17. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.Y.S.; Lo, I.M.C. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environ. Pollut. 2013, 178, 15–22. [Google Scholar] [CrossRef]
- Kang, Y.G.; Yoon, H.; Lee, W.; Kim, E.j.; Chang, Y.S. Comparative study of peroxide oxidants activated by nZVI: Removal of 1,4-Dioxane and arsenic (III) in contaminated waters. Chem. Eng. J. 2018, 334, 2511–2519. [Google Scholar] [CrossRef]
- Liang, C.; Lai, M.C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environ. Eng. Sci. 2008, 25, 1071–1078. [Google Scholar] [CrossRef]
- Kim, H.S.; Ahn, J.Y.; Kim, C.; Lee, S.; Hwang, I. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere 2014, 113, 93–100. [Google Scholar] [CrossRef]
- Xiao, R.; Wazne, M. Assessment of aged biodegradable polymer-coated nano-zero-valent iron for degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J. Chem. Technol. Biot. 2012, 88, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Xiong, C.; Wang, W.; Tan, F.; Xu, Y.; Wang, X.; Qiao, X. Facile modification of nanoscale zero-valent iron with high stability for Cr(VI) remediation. Sci. Total Environ. 2017, 596–597, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.y.; Yang, X.; Huang, X.F.; Yang, Y.H.; He, E.K.; Wang, S.; Qiu, R.L. Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: The effect of metal ions. Chem. Eng. J. 2017, 317, 613–622. [Google Scholar] [CrossRef]
- Li, H.; Qu, R.; Li, C.; Guo, W.; Han, X.; He, F.; Ma, Y.B.; Xing, B.S. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresour. Technol. 2014, 163, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, L. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant–PAHs system. Environ. Pollut. 2007, 147, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, Z.; Li, T.; Xiu, Z. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (VI) reduction. Sci. Total Environ. 2012, 421–422, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Jurado, E.; Fernández-Serrano, M.; Núñez-Olea, J.; Luzón, G.; Lechuga, M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 2006, 65, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qu, R.; Han, X.; Chen, J. Surfactant-enhanced washing of aged PAH-contaminated soils: comparison between nonionic surfactant and anionic surfactant. Appl. Mech. Mater. 2014, 522–524, 316–321. [Google Scholar] [CrossRef]
- Befkadu, A.A.; Chen, Q. Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedosphere 2018, 28, 383–410. [Google Scholar] [CrossRef]
- Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, L.; Xie, Y.; Zeng, Y.; Zhao, F. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA. Chem. Eng. J. 2017, 316, 410–418. [Google Scholar] [CrossRef]
- Peluffo, M.; Pardo, F.; Santos, A.; Romero, A. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Sci. Total Environ. 2016, 563–564, 649–656. [Google Scholar] [CrossRef]
- Al-Shamsi, M.A.; Thomson, N.R. Treatment of organic compounds by activated persulfate using nanoscale zero valent iron. Ind. Eng. Chem. Res. 2013, 52, 13564–13571. [Google Scholar] [CrossRef]
- Wan, J.; Wan, J.; Ma, Y.; Huang, M.; Wang, Y.; Ren, R. Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation. Chem. Eng. J. 2013, 221, 300–307. [Google Scholar] [CrossRef]
- Forsey, S.P.; Thomson, N.R.; Barker, J.F. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 2010, 79, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, N.; Li, C.; Yang, D.; Zhou, S.; Lei, L. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chem. Eng. J. 2016, 285, 660–670. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; MosbÆK, H.; Siegrist, R.L.; Bjerg, P.L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Long, A.; Zhang, H.; Lei, Y. Surfactant flushing remediation of toluene-contaminated soil: optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Sep. Purif. Technol. 2013, 118, 612–619. [Google Scholar] [CrossRef]
- Yan, J.; Gao, W.; Qian, L.; Han, L.; Chen, Y.; Chen, M. Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate. PLoS ONE 2015, 10, e0132878. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Sand (%) | 53 |
Silt (%) | 24 |
Clay (%) | 22 |
pH | 6.8 |
Organic carbon (%) | 0.8 |
Cation exchange capacity (cmol·kg−1) | 6.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Xu, M.; Sun, Z.; Li, H. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process. Int. J. Environ. Res. Public Health 2019, 16, 441. https://doi.org/10.3390/ijerph16030441
Qiu Y, Xu M, Sun Z, Li H. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process. International Journal of Environmental Research and Public Health. 2019; 16(3):441. https://doi.org/10.3390/ijerph16030441
Chicago/Turabian StyleQiu, Yanhua, Meilan Xu, Zongquan Sun, and Helian Li. 2019. "Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process" International Journal of Environmental Research and Public Health 16, no. 3: 441. https://doi.org/10.3390/ijerph16030441
APA StyleQiu, Y., Xu, M., Sun, Z., & Li, H. (2019). Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process. International Journal of Environmental Research and Public Health, 16(3), 441. https://doi.org/10.3390/ijerph16030441