Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Simulation of Fluid Leakage Reaction
2.1.1. Experimental Device
2.1.2. Experimental Conditions
2.1.3. Experimental Steps
2.1.4. Analytical Method
2.2. Numerical Simulation Method
2.2.1. Set Up of the Constitutive Equation
2.2.2. Transport and Diffusion of Solutes
2.2.3. Chemical Reactions and Mineral Precipitation
2.3. Initial and Boundary Conditions
2.4. Meshing
3. Results and Discussion
3.1. Mineral Phase
3.2. Experimental Results
3.3. Carbonate Precipitation Rate
3.4. Numerical Simulation of Carbonate Precipitation Rate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, F.; Hu, Y.; Feng, D.; Zhang, X.; Cheng, S.; Cao, J.; Lu, H.; Chen, D. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chem. Geol. 2016, 443, 173–181. [Google Scholar] [CrossRef]
- Reeburgh, W.S. Oceanic methane biogeochemistry. Chem. Rev. 2007, 107, 486–513. [Google Scholar] [CrossRef]
- Feng, D.; Birgel, D.; Peckmann, J.; Roberts, H.H.; Joye, S.B.; Sassen, R.; Liu, X.L.; Hinrichs, K.U.; Chen, D. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chem. Geol. 2014, 385, 129–139. [Google Scholar] [CrossRef]
- Li, J.W.; Peng, X.; Bai, S.; Chen, Z.; Van Nostrand, J.D. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochim. Cosmochim. Acta 2018, 222, 363–382. [Google Scholar] [CrossRef]
- Aloisi, G.; Pierre, C.; Rouchy, J.M.; Foucher, J.P.; Woodside, J. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet. Sci. Lett. 2000, 184, 321–338. [Google Scholar] [CrossRef]
- Liang, Q.; Hu, Y.; Feng, D.; Peckmann, J.; Chen, L.; Yang, S.; Liang, J.; Tao, J.; Chen, D. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 124, 31–41. [Google Scholar] [CrossRef]
- Hinrichs, K.U.; Boetius, A. The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry; Springer: Berlin/Heidelberg, Germany, 2002; pp. 457–477. [Google Scholar]
- Beal, E.J.; House, C.H.; Orphan, V.J. Manganese- and Iron-Dependent Marine Methane Oxidation. Science 2009, 325, 184–187. [Google Scholar] [CrossRef]
- Campbell, K.A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 362–407. [Google Scholar] [CrossRef]
- Schrag, D.P.; Higgins, J.A.; Macdonald, F.A.; Johnston, D.T. Authigenic carbonate and the history of the global carbon cycle. Science 2013, 339, 540–543. [Google Scholar] [CrossRef]
- Boetius, A.; Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 2013, 6, 725–734. [Google Scholar] [CrossRef]
- Godinho, J.R.A.; Withers, P.J. Time-lapse 3D imaging of calcite precipitation in a microporous column. Geochim. Cosmochim. Acta 2018, 222, 156–170. [Google Scholar] [CrossRef]
- Bracco, J.N.; Stack, A.G.; Steefel, C.I. Upscaling Calcite Growth Rates from the Mesoscale to the Macroscale. Environ. Sci. Technol. 2013, 47, 7555–7562. [Google Scholar] [CrossRef] [PubMed]
- Zuddas, P.; Pachana, K.; Faivre, D. The influence of dissolved humic acids on the kinetics of calcite precipitation from seawater solutions. Chem. Geol. 2003, 201, 91–101. [Google Scholar] [CrossRef]
- Suess, E.; Carson, B.; Ritger, S.D.; Moore, J.C.; Jones, M.L.; Kulm, L.D.; Cochrane, G.R. Biological Communities at Vent Sites along the Subduction Zone off Oregon. Bull. Biol. Soc. Wash. 1985, 6, 475–484. [Google Scholar]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef]
- Krause, S.; Liebetrau, V.; Gorb, S.; Sánchez-Román, M.; McKenzie, J.A.; Treude, T. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma. Geology 2012, 40, 587–590. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, T.; Tian, H.; Wei, M.; Jin, G.; Liu, N. Numerical modeling study of mineralization induced by methane cold seep at the sea bottom. Mar. Pet. Geol. 2016, 75, 14–28. [Google Scholar]
- Luff, R.; Wallmann, K.; Aloisi, G. Numerical modeling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet. Sci. Lett. 2004, 221, 337–353. [Google Scholar] [CrossRef]
- Steeb, P.; Linke, P.; Treude, T. A sediment flow-through system to study the impact of shifting fluid and methane flow regimes on the efficiency of the benthic methane filter. Limnol. Oceanogr. Methods 2014, 12, 25–45. [Google Scholar] [CrossRef]
- Leifer, I.; Boles, J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Mar. Pet. Geol. 2006, 23, 401. [Google Scholar] [CrossRef]
- Linke, P.; Suess, E.; Torres, M.; Martens, V.; Rugh, W.D.; Ziebis, W.; Kulm, L.D. In-Situ Measurement of Fluid-Flow from Cold Seeps at Active Continental Margins. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 1994, 41, 721–739. [Google Scholar] [CrossRef]
- Zhang, X.; Du, Z.; Luan, Z.; Wang, X.; Xi, S.; Wang, B.; Li, L.; Lian, C.; Yan, J. In Situ Raman Detection of Gas Hydrates Exposed on the Seafloor of the South China Sea. Geochem. Geophys. Geosyst. 2017, 18, 3700–3713. [Google Scholar] [CrossRef]
- Xu, T.F.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 2011, 37, 763–774. [Google Scholar] [CrossRef]
- Xu, T.; Bei, K.; Tian, H.; Cao, Y. Laboratory experiment and numerical simulation on authigenic mineral formation induced by seabed methane seeps. Mar. Pet. Geol. 2017, 88, 950–960. [Google Scholar] [CrossRef]
- Xu, T.; Shang, S.; Tian, H.; Bei, K.; Cao, Y. Numerical Simulation on Authigenic Barite Formation in Marine Sediments. Minerals 2019, 9, 98. [Google Scholar] [CrossRef]
- Xu, T.F.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 2006, 32, 145–165. [Google Scholar] [CrossRef]
- Lasaga, A.C.; Soler, J.M.; Ganor, J.; Burch, T.E.; Nagy, K.L. Chemical-Weathering Rate Laws and Global Geochemical Cycles. Geochim. Cosmochim. Acta 1994, 58, 2361–2386. [Google Scholar] [CrossRef]
- Steefel, C.I.; Lasaga, A.C. A Coupled Model for Transport of Multiple Chemical-Species and Kinetic Precipitation Dissolution Reactions with Application to Reactive Flow in Single-Phase Hydrothermal Systems. Am. J. Sci. 1994, 294, 529–592. [Google Scholar] [CrossRef]
- Boettcher, A.L.; Wyllie, P.J. The Calcite-Aragonite Transition Measured in the System CaO-CO2-H2O. J. Geol. 1968, 76, 314–330. [Google Scholar] [CrossRef]
- Millero, F.J.; Yao, W.S.; Aicher, J. The Speciation of Fe(Ii) and Fe(Iii) in Natural-Waters. Mar. Chem. 1995, 50, 21–39. [Google Scholar] [CrossRef]
- Luff, R.; Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim. Cosmochim. Acta 2003, 67, 3403–3421. [Google Scholar] [CrossRef]
- Macdonald, F.; Lide, D.R. CRC handbook of chemistry and physics: From paper to web. Abstr. Pap. Am. Chem. Soc. 2003, 225, U552. [Google Scholar]
- Burton, E.A.; Walter, L.M. Relative Precipitation Rates of Aragonite and Mg Calcite from Seawater—Temperature or Carbonate Ion Control. Geology 1987, 15, 111–114. [Google Scholar] [CrossRef]
- Raiswell, R.; Fisher, Q.J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the fon-nation of concretions. Chem. Geol. 2004, 211, 71–85. [Google Scholar] [CrossRef]
- Karaca, D.; Hensen, C.; Wallmann, K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem. Geophys. Geosyst. 2013, 11. [Google Scholar] [CrossRef]
- Mau, S.; Sahling, H.; Rehder, G.; Suess, E.; Linke, P.; Söding, E. Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar. Geol. 2006, 225, 129–144. [Google Scholar] [CrossRef]
- Tritton, D.J. (Ed.) Physical Fluid Dynamics; Van Nostrand Reinhold Co., Ltd.: London, UK, 1977. [Google Scholar] [CrossRef]
- Folk, R. Petrology of Sedimentary Rocks; Hemphill Publishing: Austin, TX, USA, 1980. [Google Scholar]
- Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W., III; Lorenson, T.D.; Greene, H.G. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2007, 54, 1268–1291. [Google Scholar] [CrossRef]
Ca2+ (mM) | Fe2+ (µM) | Na+ (mM) | Mg2+ (mM) | ALK (mM) | Cl-(mM) | SO42− (mM) | Salinity (PSU) | Temperature (°C) | |
---|---|---|---|---|---|---|---|---|---|
D17-2015 | 10.16 | 0.45 | 475 | 53.8 | 3 | 556 | 2 | 35 | 15.6 |
Parameters used in the experiment | 50 | 0 | 470 | 0 | 3 | 490 | 0 | 35 | 15 |
Experimental Condition | Temperature (°C) | Pressure (MPa) | Solution in the Reactor | Infused Solution | Injection Rate (mL·min−1) | Sampling Interval (min) | Number of Samples |
---|---|---|---|---|---|---|---|
Fast flow scenario | 15 | 0.1 | 50 mM CaCl2 | 3 mM NaHCO3 | 5 | 20 | 8 |
Slow flow scenario | 15 | 0.1 | 50 mM CaCl2 | 3 mM NaHCO3 | 1 | 20 | 8 |
Initial Condition | ||
---|---|---|
Solution Composition | Concentration (mM) | Injection Rate (mL·min−1) |
CaCl2 | 50 | - |
NaHCO3 | 3 | |
Upper boundary condition | ||
CaCl2 | 50 | 0.6 or 2.7 |
NaHCO3 | 0 | |
Lower boundary condition | ||
CaCl2 | 0 | - |
NaHCO3 | 10 | 1 or 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, T.; Jin, G.; Wu, D.; Liu, L. Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments. Int. J. Environ. Res. Public Health 2019, 16, 1433. https://doi.org/10.3390/ijerph16081433
Ye T, Jin G, Wu D, Liu L. Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments. International Journal of Environmental Research and Public Health. 2019; 16(8):1433. https://doi.org/10.3390/ijerph16081433
Chicago/Turabian StyleYe, Tao, Guangrong Jin, Daidai Wu, and Lihua Liu. 2019. "Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments" International Journal of Environmental Research and Public Health 16, no. 8: 1433. https://doi.org/10.3390/ijerph16081433
APA StyleYe, T., Jin, G., Wu, D., & Liu, L. (2019). Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments. International Journal of Environmental Research and Public Health, 16(8), 1433. https://doi.org/10.3390/ijerph16081433