Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran
Abstract
:1. Introduction
- Identify the areas where high-fluoride waters developed through a geographic information system (GIS) and,
- Calculate according to the US EPA approach for the non-carcinogenic diseases risk assessment of residents exposed to fluoride through the ground water supplies.
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Determination of Fluoride in Samples of Drinking Water
2.3. Calculation of Health Risk Assessment
2.4. GIS
2.5. Statistical Analysis
3. Results
3.1. Data Summary
3.2. Fluoride in Drinking Water Samples in Cold and Warm Seasons
3.3. Exposure and Risk Assessment in Cold and Warm Seasons
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghaderpoori, M.; Jafari, A.; Ghaderpoury, A. Heavy metals analysis and quality assessment in drinking water–Khorramabad city, Iran. Data Brief 2018, 16, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Keramati, H.; Ghorbani, R.; Fakhri, Y.; Khaneghah, A.M.; Conti, G.O.; Ferrante, M.; Golaki, M. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation). Food Chem. Toxicol. 2018, 115, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.N.; Panahande, M.; Yousefi, M.; Asghari, F.B.; Conti, G.O.; Talaee, E.; Mohammadi, A.A. Carcinogenic and Non-carcinogenic Risk Assessment of Heavy Metals in Groundwater Wells in Neyshabur Plain, Iran. Biol. Trace Elem. Res. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mirzabeygi, M.; Yousefi, M.; Soleimani, H.; Mohammadi, A.A.; Mahvi, A.H.; Abbasnia, A. The concentration data of fluoride and health risk assessment in drinking water in Ardakan city of Yazd province, Iran. Data Brief. 2018, 18, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Amouei, A.; Mahvi, A.; Mohammadi, A.; Asgharnia, H.; Fallah, S.; Khafajeh, A. Fluoride concentration in potable groundwater in rural areas of Khaf city, Razavi Khorasan province, Northeastern Iran. Int. J. Occup. Environ. Med. 2012, 3, 201–203. [Google Scholar] [PubMed]
- Augustsson, A.; Berger, T. Assessing the risk of an excess fluoride intake among Swedish children in households with private wells—Expanding static single-source methods to a probabilistic multi-exposure-pathway approach. Environ. Int. 2014, 68, 192–199. [Google Scholar] [CrossRef]
- Dehbandi, R.; Moore, F.; Keshavarzi, B. Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere 2018, 193, 763–776. [Google Scholar] [CrossRef]
- Fallahzadeh, R.A.; Miri, M.; Taghavi, M.; Gholizadeh, A.; Anbarani, R.; Hosseini-Bandegharaei, A.; Conti, G.O. Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. Food Chem. Toxicol. 2018, 113, 314–321. [Google Scholar] [CrossRef]
- Amaral, S.L.; Azevedo, L.B.; Buzalaf, M.A.; Fabrico, M.F.; Fernandes, M.S.; Valentine, R.A.; MAguire, A.; Zohoori, F.V. Effect of chronic exercise on fluoride metabolism in fluorosis-susceptible mice exposed to high fluoride. Sci. Rep. 2018, 8, 3211. [Google Scholar] [CrossRef]
- Shams, M.; Dobaradaran, S.; Mazloomi, S.; Afsharnia, M.; Ghasemi, M.; Bahreinie, M. Drinking water in Gonabad, Iran: Fluoride levels in bottled, distribution network, point of use desalinator, and decentralized municipal desalination plant water. Fluoride 2012, 45, 138. [Google Scholar]
- Mohammadi, A.A.; Yousefi, M.; Yaseri, M.; Jalilzadeh, M.; Mhvi, A.H. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci. Rep. 2017, 7, 17300. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Mohammadi, A.A.; Yaseri, M.; Mahvi, A.H. Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: An ecological study in West Azerbaijan Province, Poldasht County, Iran. Fluoride 2017, 50, 343–353. [Google Scholar]
- Yousefi, M.; Yaseri, M.; Nabizadeh, R.; Hooshmand, E.; Jalilzadeh, M.; Mahvi, A.H.; Mohammadi, A.A. Association of hypertension, body mass index and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol. Trace Elem. Res. 2018, 185, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Kazemi Moghadam, V.; Yousefi, M.; Khosravi, A.; Yaseri, M.; Mahvi, A.H.; Hadei, M.; Mohammadi, A.A.; Robati, Z.; Mokamel, A. High concentration of fluoride can be increased risk of abortion. Biol. Trace Elem. Res. 2018, 185, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, A.H.; Ghanbarian, M.; Ghanbarian, M.; Khosravi, A.; Ghanbarian, M. Determination of fluoride concentrationin powdered milk in Iran 2010. Br. J. Nutr. 2012, 107, 1077–1079. [Google Scholar] [CrossRef] [PubMed]
- Karimzade, S.; Aghaei, M.; Mahvi, A. Investigation of intelligence quotient in 9–12-year-old children exposed to high-and low-drinking water fluoride in West Azerbaijan Province, Iran. Fluoride 2014, 47, 9–14. [Google Scholar]
- Sun, L.; Gao, Y.; Liu, H.; Zhang, W.; Ding, Y.; Li, B.; LI, M.; Sun, D. An assessment of the relationship between excess fluoride intake from drinking water and essential hypertension in adults residing in fluoride endemic areas. Sci. Total Environ. 2013, 443, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.A.; Yousefi, M.; Mahvi, A.H. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. Data Brief 2017, 13, 312–315. [Google Scholar] [CrossRef]
- Asghari, F.B.; Mohammadi, A.A.; Aboosaedi, Z.; Yaseri, M.; Yousefi, M. Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran). Data Brief 2017, 15, 528–531. [Google Scholar] [CrossRef]
- Martínez-Acuña, M.I.; Mercado-Reyes, M.; Alegría-Torres, J.A.; Mejía-Saavedra, J.J. Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environ. Monit. Assess. 2016, 188, 476. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H.; Gao, Y. Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest china. Expo. Health 2017, 9, 183–195. [Google Scholar] [CrossRef]
- Guissouma, W.; Hakami, O.; AL-Rajab, A.J.; Tarhouni, J. Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere 2017, 177, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Faraji, H.; Mohammadi, A.A.; Akbari-Adergani, B.; Saatloo, N.V.; Lashkarboloki, G.; Mahvi, A.H. Correlation between fluoride in drinking Water and its levels in breast milk in Golestan Province, Northern Iran. Iran. J. Public Health 2014, 43, 1664–1668. [Google Scholar] [PubMed]
- Yousefi, M.; Ghoochani, M.; Mahvi, A.H. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol. Environ. Saf. 2018, 148, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Kamarehie, B.; Ghaderpoori, M.; Khoshnamvand, N.; Birjandi, M. The concentration data of heavy metals in Iranian grown and imported rice and human health hazard assessment. Data Brief 2018, 16, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, W.M.; Shand, P.; Hart, P.; Ward, R.S. The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total Environ. 2003, 310, 25–35. [Google Scholar] [CrossRef]
- Keshavarz, S.; Ebrahimi, A.; Nikaeen, M. Fluoride exposure and its health risk assessment in drinking water and staple food in the population of Dayyer, Iran, in 2013. J. Educ. Health Promot. 2015, 4, 72. [Google Scholar]
- Asghari, F.B.; Jaafari, J.; Yousefi, M.; Mohammadi, A.A.; Dehghanzadeh, R. Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1138–1149. [Google Scholar] [CrossRef]
- Huang, D.; Yang, J.; Wei, X.; Qin, J.; Ou, S.; Zhang, Z.; Zou, Y. Probabilistic risk assessment of Chinese residents’ exposure to fluoride in improved drinking water in endemic fluorosis areas. Environ. Pollut. 2017, 222, 118–125. [Google Scholar]
Risk Exposure Factors | Values for Groups | Unit | |||
---|---|---|---|---|---|
Infants | Children | Teenagers | Adults | ||
Cf | mg/L | ||||
Cd | 0.08 | 0.85 | 2 | 2.5 | Liter/day |
Bw | 10 | 15 | 50 | 78 | Kg |
RfD | 0.06 | 0.06 | 0.06 | 0.06 | mg/kg.day |
Sampling Location | Source | Population | Sampling Location | Source | Population | Sampling Location | Source | Population |
---|---|---|---|---|---|---|---|---|
Ghezel Dagh Kord | Deep well | 927 | Ghara Khach | Spring | 281 | Haji Hassan | Spring | - |
Hassain Bozorgh | Spring | 203 | Turkan | Spring | - | - | Spring | - |
Hassain Kochekh | Manual well | 207 | Dibak | Spring | 128 | Ghrik | Spring | 273 |
Mirza Khalil | Spring | 171 | Baroon | Spring | 174 | Yarim gayeh olya | Deep well | 278 |
Tazakand adaghan | Manual well | 147 | Ghoosh | Spring | 423 | Kharman Yeri | Spring | 491 |
Hasso shaki | Manual well | 173 | Kholkhola | Spring | - | Ghori shakak | Manual well | 699 |
Hesar | Spring | 392 | Aghgol | Spring | 1067 | Kishmish tapa | Deep well | 3623 |
Isa khan | Manual well | 170 | Gomshor aghgol | Spring | 194 | Chamanloo | Spring | 29 |
Ghala zagasi | Semi-deep well | - | Yikhilgan | Spring | 195 | Aghbilagh Chamanlo | Spring | 118 |
Tika kord | Semi-deep well | 313 | Molik | Spring | - | Tika ajam | Well | 117 |
Adaghan | Semi-deep well | - | Ghara Bilagh | Spring | 110 | Jan aziz | Spring | - |
Torkma | Spring | 282 | Markmi | Spring | 146 | Mail kandi | Spring | 7 |
Sangar | Deep well | 651 | Bash Kand | Spring | 485 | Ghala jogh | Spring | - |
Takhteh Doz | Well | 328 | Ghojat | Well | Para khodak | Spring | - | |
Hasso shiri | Spring | 106 | Tlim Khan | Manual well | 145 | Kosa kandi | Spring | 378 |
Danoye Bozorgh | Spring | 451 | Ghishlagh | Spring | 111 | Mohammad kandi | Spring | - |
Kahriz ghalasi | Spring | - | Shorick | Spring | - | Baqcheh Jooq | Well | - |
Alighandoo | Spring | 175 | Hajoo | Spring | - | Gamos | Spring | - |
Ali abad | Spring | 205 | Goal ali | Spring | 209 | Rand | Spring | 340 |
Mohammad abad | Well | 92 | Mus | Spring | 132 | Rand | Well | 340 |
Jaganloyeh ajam | Spring | 7 | Tajdoo | Spring | 134 |
Statistical Analysis | Fluoride Concentration | |
---|---|---|
Cold Season | Warm Season | |
Number of samples | 62.00 | 62.00 |
Max | 6.68 | 11.14 |
Min | 0.29 | 0.1 |
Mean | 1.65 | 2.75 |
SD | 1.44 | 3.33 |
WHO Guideline | 1.5 | |
Maximum allowable | 1.5 | |
Minimum allowable | 0.5 | |
Percentage of fluoride concentration low 0.5 mg/L | 6.45 | 6.45 |
Percentage of fluoride concentration above 1.5 mg/L | 25.80 | 25.80 |
Percentage of fluoride concentration above 5 mg/L | 4.84 | 19.35 |
Different Age Groups | HQ | EDI | ||
---|---|---|---|---|
Cold | Warm | Cold | Warm | |
Mean infants group | 0.220 | 0.366 | 0.013 | 0.022 |
Mean children group | 1.558 | 2.596 | 0.093 | 0.156 |
Mean teenagers group | 1.100 | 1.832 | 0.066 | 0.110 |
Mean adults group | 0.881 | 1.468 | 0.053 | 0.088 |
Minimum infants group | 0.038 | 0.013 | 0.002 | 0.001 |
Minimum children group | 0.271 | 0.094 | 0.016 | 0.006 |
Minimum teenagers group | 0.191 | 0.067 | 0.011 | 0.004 |
Minimum adults group | 0.153 | 0.053 | 0.009 | 0.003 |
Maximum infants group | 0.891 | 1.485 | 0.053 | 0.089 |
Maximum children group | 6.312 | 10.520 | 0.379 | 0.631 |
Maximum teenagers group | 4.455 | 7.426 | 0.267 | 0.446 |
Maximum adults group | 3.570 | 5.950 | 0.214 | 0.357 |
Percentage(HQ > 1) in the group infant | 0 | 17.74 | - | - |
Percentage(HQ > 1) in the group children | 58.06 | 61.29 | - | - |
Percentage(HQ > 1) in the group teenagers | 25.8 | 25.8 | - | - |
Percentage(HQ > 1) in the group adults | 17.74 | 24.19 | - | - |
Percentage of samples | 0 | 17.74 | - | - |
in the four age groups of HQ > 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, M.; Asghari, F.B.; Zuccarello, P.; Oliveri Conti, G.; Ejlali, A.; Mohammadi, A.A.; Ferrante, M. Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran. Int. J. Environ. Res. Public Health 2019, 16, 564. https://doi.org/10.3390/ijerph16040564
Yousefi M, Asghari FB, Zuccarello P, Oliveri Conti G, Ejlali A, Mohammadi AA, Ferrante M. Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran. International Journal of Environmental Research and Public Health. 2019; 16(4):564. https://doi.org/10.3390/ijerph16040564
Chicago/Turabian StyleYousefi, Mahmood, Farzaneh Baghal Asghari, Pietro Zuccarello, Gea Oliveri Conti, Aida Ejlali, Ali Akbar Mohammadi, and Margherita Ferrante. 2019. "Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran" International Journal of Environmental Research and Public Health 16, no. 4: 564. https://doi.org/10.3390/ijerph16040564
APA StyleYousefi, M., Asghari, F. B., Zuccarello, P., Oliveri Conti, G., Ejlali, A., Mohammadi, A. A., & Ferrante, M. (2019). Spatial Distribution Variation and Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran. International Journal of Environmental Research and Public Health, 16(4), 564. https://doi.org/10.3390/ijerph16040564