Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review
Abstract
:1. Introduction
- papillary thyroid cancer (PTC; 75–85% of cases) often with an excellent prognosis;
- follicular thyroid cancer (FTC; 10–20% of cases);
- Hürtle cell carcinomas (or oxyphilic cell carcinoma), rare and with prognosis similar to FTC;
- poorly differentiated thyroid cancer (PDTC), an uncommon form of thyroid carcinomas accounting for less than 5% of all cases;
- anaplastic thyroid cancer (ATC), aggressive undifferentiated tumors with a mortality near to 100% of patients, and finally.
2. Material and Methods
3. Chemical Pollutants
3.1. Pesticides
3.2. Phthalates and Bisphenol A
3.3. Polychlorinated Biphenyls (PCBs)
3.4. Perfluorinated Compounds
3.5. Brominated Flame-Retardants
3.6. Perchlorates
3.7. Metals
3.8. Metalloids
3.9. Nitrates
3.10. Air Pollution
4. Physical Factors
4.1. External Anthropogenic Radiation
- eliminate residual normal thyroid tissue after thyroidectomy;
- treat residual microscopic disease (adjuvant treatment);
- treat macroscopic or metastatic disease [71].
4.2. External and Internal Natural Radiation
5. Live in Volcanic Environment
6. Fetal Origin of Endocrine Dysfunction by Environmental Exposures and Epigenetics Evidences
7. Conclusions
- (1)
- excessive nitrate uptake via drinking water that increases nitrite production and so, leads to the development of hypoxia in the blood, especially in children, and to overproduction of NO, which is a carcinogenic compound;
- (2)
- natural radiation exposure but also therapeutic radiation exposure of the salivary glands, e.g., by dental X-ray examination, may lead to an increased plasma levels of NO;
- (3)
- if one or both of these processes coincide with radiation exposure of the thyroid, the considerably increased NO concentrations in the body presumably enhance the carcinogenic effect of the radiation;
- (4)
- iodine and/or selenium deficiency;
- (5)
- air pollution exposure and live in environment at risk such as volcanic areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oliveri Conti, G.; Heibati, B.; Kloog, I.; Fiore, M.; Ferrante, M. A review of AirQ Models and their applications for forecasting the air pollution health outcomes. Environ. Sci. Pollut. Res. Int. 2017, 24, 6426–6445. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Calogero, A.E.; Giacone, F.; Fiore, M.; Barchitta, M.; Agodi, A.; Ferrante, M. B(a)P adduct levels and fertility: A cross-sectional study in a Sicilian population. Mol. Med. Rep. 2017, 15, 3398–3404. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Cilloni, S.; Bargellini, A.; Vergoni, A.V.; Tsatsakis, A.; Ferrante, M. Health risk assessment of environmental selenium: Emerging evidence and challenges (Review). Mol. Med. Rep. 2017, 15, 3323–3335. [Google Scholar] [CrossRef]
- Keshtgar, L.; Zuccarello, P.; Dehghani, M.; Javaheri, M.R.; Derakhshan, Z.; Conti, G.O.; Ferrante, M. The effects of air pollutants on the mortality rate of lung cancer and leukemia. Mol. Med. Rep. 2017, 15, 3390–3397. [Google Scholar]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Hopke, P.K.; Ferrante, M.; De Marco, A.; Sicard, P.; Conti, G.O.; Goudarzi, G.; Basiri, H.; Mohammadi, M.J.; et al. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ. Res. 2017, 156, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Bahrami Asl, F.; Leili, M.; Vaziri, Y.; Salahshour Arian, S.; Cristaldi, A.; Oliveri Conti, G.; Ferrante, M. Health impacts quantification of ambient air pollutants using AirQ model approach in Hamadan, Iran. Environ. Res. 2018, 161, 114–121. [Google Scholar] [CrossRef]
- Zuccarello, P.; Oliveri Conti, G.; Cavallaro, F.; Copat, C.; Cristaldi, A.; Fiore, M.; Ferrante, M. Implication of dietary phthalates in breast cancer. A systematic review. Food Chem. Toxicol. 2018, 118, 667–674. [Google Scholar] [CrossRef]
- Fallahzadeh, R.A.; Miri, M.; Taghavi, M.; Gholizadeh, A.; Anbarani, R.; Hosseini-Bandegharaei, A.; Ferrante, M.; Conti, G.O. Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. Chem. Toxicol. 2018, 113, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Keramati, H.; Ghorbani, R.; Fakhri, Y.; Khaneghah, A.M.; Conti, G.O.; Ferrante, M.; Ghaderpoori, M.; Taghavi, M.; Baninameh, Z.; Bay, A.; et al. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation). Chem. Toxicol. 2018, 115, 460–469. [Google Scholar] [CrossRef]
- Aschebrook-Kilfoy, B.; Dellavalle, C.T.; Purdue, M.; Kim, C.; Zhang, Y.; Sjodin, A.; Ward, M.H. Polybrominated Diphenyl Ethers and Thyroid Cancer Risk in the Prostate, Colorectal, Lung, and Ovarian Cancer Screening Trial Cohort. Am. J. Epidemiol. 2015, 181, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Nettore, I.C.; Colao, A.; Macchia, P.E. Nutritional and Environmental Factors in Thyroid Carcinogenesis. Int. J. Environ. Res. Public Health 2018, 15, 1735. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Pisani, P.; Buzzoni, C.; Crocetti, E.; Maso, L.D.; Rondelli, R. AIRTUM Working Group and AIEOP Working Group. Epidemiol. Prev. 2012, 225, 1–24. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Jugan, M.-L.; Levi, Y.; Blondeau, J.-P. Endocrine disruptors and thyroid hormone physiology. Biochem. Pharmacol. 2010, 79, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Sonnenschein, C. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 2010, 6, 363–370. [Google Scholar] [CrossRef]
- Han, M.A.; Kim, J.H.; Song, H.S. Persistent organic pollutants, pesticides, and the risk of thyroid cancer: Systematic review and meta-analysis. Eur. J. Cancer Prev. 2018. [Google Scholar] [CrossRef]
- Weichenthal, S.; Moase, C.; Chan, P. A Review of Pesticide Exposure and Cancer Incidence in the Agricultural Health Study Cohort. Environ. Health Perspect. 2010, 118, 1117–1125. [Google Scholar] [CrossRef]
- Colao, A.; Muscogiuri, G.; Piscitelli, P. Environment and Health: Not Only Cancer. Int. J. Environ. Res. Public Health 2016, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, F.; Zhang, J.; Hao, L.; Jiang, J.; Dang, L.; Mei, D.; Fan, S.S.; Yu, Y.; Jiang, L. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch. Biochem. Biophys. 2017, 633, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Boas, M.; Feldt-Rasmussen, U.; Main, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 2010, 66, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Rice, N.; Depledge, M.H.; Henley, W.E.; Galloway, T.S. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ. Health Perspect. 2010, 118, 686–692. [Google Scholar] [CrossRef] [PubMed]
- US EPA O. Technical Fact Sheet—Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Biphenyls (PBBs). US EPA, 2013. Available online: https://www.epa.gov/fedfac/technical-fact-sheet-polybrominated-diphenyl-ethers-pbdes-and-polybrominated-biphenyls-pbbs (accessed on 28 January 2019).
- Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Harden, F.A.; Toms, L.-M.L.; Norman, R.E. Health consequences of exposure to brominated flame retardants: A systematic review. Chemosphere 2014, 106, 1–19. [Google Scholar] [CrossRef] [PubMed]
- ATSDR-ToxFAQsTM: Perchlorates. Available online: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=893&tid=181 (accessed on 28 January 2019).
- Filippini, T.; Michalke, B.; Wise, L.A.; Malagoli, C.; Malavolti, M.; Vescovi, L.; Salvia, C.; Bargellini, A.; Sieri, S.; Krogh, V.; et al. Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem. Toxicol. 2018, 115, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Conti, G.O. Environment and Neurodegenerative Diseases: An Update on miRNA Role. Microrna 2017, 6, 157–165. [Google Scholar] [CrossRef]
- Conti, G.O.; Copat, C.; Ledda, C.; Fiore, M.; Fallico, R.; Sciacca, S.; Ferrante, M. Evaluation of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Mullus barbatus from Sicily Channel and Risk-Based Consumption Limits. Bull. Environ. Contam. Toxicol. 2012, 88, 946–950. [Google Scholar] [CrossRef]
- Ferrante, M.; Ledda, C.; Oliveri Conti, G.; Fiore, M.; Rapisarda, V.; Copat, C.; Sole, G.; Terzo, N.; Travali, S. Lead exposure and plasma mRNA expression in ERBB2 gene. Mol. Med. Rep. 2017, 15, 3361–3365. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, Y.; Mousavi Khaneghah, A.; Conti, G.O.; Ferrante, M.; Khezri, A.; Darvishi, A.; Ahmadi, M.; Hasanzadeh, A.; Keramati, H.; Moradi, B.; et al. Probabilistic risk assessment (Monte Carlo simulation method) of Pb and Cd in the onion bulb (Allium cepa) and soil of Iran. Environ. Sci. Pollut. Res. Int. 2018, 25, 30894–30906. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, Y.; Mohseni-Bandpei, A.; Oliveri Conti, G.; Ferrante, M.; Cristaldi, A.; Jeihooni, A.K.; Dehkordi, M.K.; Alinejad, A.; Rasoulzadeh, H.; Mohseni, S.M.; et al. Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian gulf. Food Chem. Toxicol. 2018, 113, 278–286. [Google Scholar] [CrossRef]
- Copat, C.; Grasso, A.; Fiore, M.; Cristaldi, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. Trace elements in seafood from the Mediterranean sea: An exposure risk assessment. Food Chem. Toxicol. 2018, 115, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Koedrith, P.; Seo, Y.R. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers. Int. J. Mol. Sci. 2011, 12, 9576–9595. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Mohammadi, A.; Faraji, M.; Conti, G.O.; Ferrante, M.; Miri, M. Mortality and morbidity due to exposure to particulate matter related to drying Urmia Lake in the NW Iran. Eur. J. Intern. Med. 2019, 60, e14–e15. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.N.; Panahande, M.; Yousefi, M.; Asghari, F.B.; Conti, G.O.; Talaee, E.; Mohammadi, A.A. Carcinogenic and Non-carcinogenic Risk Assessment of Heavy Metals in Groundwater Wells in Neyshabur Plain, Iran. Boil. Elem. Res. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Fiore, M.; Conti, G.O.; Fiore, V.; Grasso, A.; Copat, C.; Signorelli, S.S. Transition and heavy metals compared to oxidative parameter balance in patients with deep vein thrombosis: A case-control study. Mol. Med. Rep. 2017, 15, 3438–3444. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Bergamaschi, A. The Effects of Metals as Endocrine Disruptors. J. Toxicol. Environ. Health B 2009, 12, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Vigneri, R.; Malandrino, P.; Gianì, F.; Russo, M.; Vigneri, P. Heavy metals in the volcanic environment and thyroid cancer. Mol. Cell. Endocrinol. 2017, 457, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.M.; Fallahi, P.; Antonelli, A.; Benvenga, S. Environmental Issues in Thyroid Diseases. Front. Endocrinol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Buha, A.; Matović, V.; Antonijevic, B.; Bulat, Z.; Čurćić, M.; Renieri, E.A.; Tsatsakis, A.M.; Schweitzer, A.; Wallace, D. Overview of Cadmium Thyroid Disrupting Effects and Mechanisms. Int. J. Mol. Sci. 2018, 19, 1501. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-K.; Nam, J.S.; Ahn, C.W.; Lee, Y.S.; Kim, K.R. Some Elements in Thyroid Tissue are Associated with More Advanced Stage of Thyroid Cancer in Korean Women. Biol. Trace Elem. Res. 2016, 171, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Assem, F.L.; Holmes, P.; Levy, L.S. The mutagenicity and carcinogenicity of inorganic manganese compounds: A synthesis of the evidence. J. Toxicol. Environ. Health Part B 2011, 14, 537–570. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Liu, J.; Jin, L.; Yang, F.; Wang, J.; Wang, O.; Gao, Y. Correlation between serum lead and thyroid diseases: Papillary thyroid carcinoma, nodular goiter, and thyroid adenoma. Int. J. Environ. Health Res. 2017, 27, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, P.; Foddis, R.; Elia, G.; Ragusa, F.; Patrizio, A.; Benvenga, S.; Cristaudo, A.; Antonelli, A.; Ferrari, S.M. Vanadium pentoxide induces the secretion of CXCL9 and CXCL10 chemokines in thyroid cells. Oncol. Rep. 2018, 39, 2422–2426. [Google Scholar] [CrossRef]
- Triggiani, V.; Tafaro, E.; Giagulli, V.; Sabba, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of Iodine, Selenium and Other Micronutrients in Thyroid Function and Disorders. Endocr. Metab. Disord. Drug Targets 2009, 9, 277–294. [Google Scholar] [CrossRef]
- Winther, K.H.; Bonnema, S.J.; Cold, F.; Debrabant, B.; Nybo, M.; Cold, S.; Hegedüs, L. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur. J. Endocrinol. 2015, 172, 657–667. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. Eur. J. Epidemiol. 2018, 33, 789–810. [Google Scholar] [CrossRef] [PubMed]
- Köhrle, J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Shreenath, A.P.; Dooley, J. Selenium, Deficiency. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482260/ (accessed on 28 January 2019).
- Sakız, D.; Kaya, A.; Kulaksizoglu, M. Serum Selenium Levels in Euthyroid Nodular Thyroid Diseases. Biol. Trace Elem. Res. 2016, 174, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low Population Selenium Status Is Associated with Increased Prevalence of Thyroid Disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Rotondi, M.; Accardo, G.; Vallone, G.; Conzo, G.; Docimo, G.; Selvaggi, F.; Cappelli, C.; Chiovato, D.; Giugliano, D.; et al. Influence of short-term selenium supplementation on the natural course of Hashimoto’s thyroiditis: Clinical results of a blinded placebo-controlled randomized prospective trial. J. Endocrinol. Investig. 2017, 40, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Kilfoy, B.A.; Weyer, P.J.; Anderson, K.E.; Folsom, A.R.; Cerhan, J.R. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology 2010, 21, 389–395. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Fatuzzo, P.M.; Rapisarda, F.A.; Neri, S.; Ferrante, M.; Conti, G.O.; Fallico, R.; Di Pino, L.; Pennisi, G.; Celotta, G.; et al. A Randomised, Controlled Clinical Trial Evaluating Changes in Therapeutic Efficacy and Oxidative Parameters after Treatment with Propionyl L-Carnitine in Patients with Peripheral Arterial Disease Requiring Haemodialysis. Drugs Aging 2006, 23, 263–270. [Google Scholar] [CrossRef]
- Santo, S.S.; Sergio, N.; Giuseppe, M.; Margherita, F.; Gea, O.C.; Roberto, F.; Gabriella, C.; Giuseppe, P.; Massimiliano, A. Effect of PLC on functional parameters and oxidative profile in type 2 diabetes-associated PAD. Diabetes Res. Clin. Pract. 2006, 72, 231–237. [Google Scholar] [CrossRef]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Aschebrook-Kilfoy, B.; Heltshe, S.L.; Nuckols, J.R.; Sabra, M.M.; Shuldiner, A.R.; Mitchell, B.D.; Airola, M.; Holford, T.R.; Zhang, Y.; Ward, M.H. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania. Environ. Health 2012, 11, 6. [Google Scholar] [CrossRef]
- Xie, L.; Mo, M.; Jia, H.-X.; Liang, F.; Yuan, J.; Zhu, J. Association between dietary nitrate and nitrite intake and site-specific cancer risk: Evidence from observational studies. Oncotarget 2016, 7, 56915–56932. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Jones, R.R.; Anderson, K.E.; Cantor, K.P.; Cerhan, J.R.; Krasner, S.; Robien, K.; Weyer, P.J.; Ward, M.H. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int. J. Cancer 2015, 137, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Drozd, V.M.; Branovan, I.; Shiglik, N.; Biko, J.; Reiners, C. Thyroid Cancer Induction: Nitrates as Independent Risk Factors or Risk Modulators after Radiation Exposure, with a Focus on the Chernobyl Accident. Eur. Thyroid J. 2018, 7, 67–74. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2017. Available online: https://www.who.int/en/news-room/fact-sheets/detail/cancer (accessed on 29 January 2019).
- Turner, M.C.; Krewski, D.; Diver, W.R.; Pope, C.A., 3rd; Burnett, R.T.; Jerrett, M.; Marshall, J.D.; Gapstur, S.M. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ. Health Perspect. 2017, 125, 087013. [Google Scholar] [CrossRef] [PubMed]
- Cong, X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China. Environ. Sci. Pollut. Res. 2018, 25, 13067–13078. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W. Chernobyl thyroid cancer: 30 years of follow-up overview. Radiat. Prot. Dosim. 2018, 182, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Estorch, M.; Mitjavila, M.; Muros, M.; Caballero, E. Radioiodine treatment of differentiated thyroid cancer related to guidelines and scientific literature. Rev. Española Med. Nucl. Imagen Mol. 2019. pii: S2253-654X(18)30334-2. [Google Scholar] [CrossRef]
- Jimenez Londoño, G.A.; Garcia Vicente, A.M.; Sastre Marcos, J.; Pena Pardo, F.J.; Amo-Salas, M.; Moreno Caballero, M.; Talavera Rubio, M.P.; Gonzalez Garcia, B.; Disotuar Ruiz, N.D.; Soriano Castrejón, A.M. Low-Dose radioiodine ablation in patients with low-risk differentiated thyroidcancer. Eur. Thyroid J. 2018, 7, 218–224. [Google Scholar] [CrossRef]
- Luster, M.; Aktolun, C.; Amendoeira, I.; Barczyński, M.; Bible, K.C.; Duntas, L.H.; Elisei, R.; Handkiewicz-Junak, D.; Hoffmann, M.; Jarzab, B.; et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid 2019, 29, 7–26. [Google Scholar] [CrossRef]
- Schlumberger, M.; Chevillard, S.; Ory, K.; Dupuy, C.; Le Guen, B.; De Vathaire, F. Cancer de la thyroïde après exposition aux rayonnements ionisants. Cancer/Radiothérapie 2011, 15, 394–399. [Google Scholar] [CrossRef]
- Oakland, C.; Meliker, J.R. County-Level Radon and Incidence of Female Thyroid Cancer in Iowa, New Jersey, and Wisconsin, USA. Toxics 2018, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Nagataki, S.; Takamura, N. A review of the Fukushima nuclear reactor accident: Radiation effects on the thyroid and strategies for prevention. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Saenko, V.A.; Thomas, G.A.; Yamashita, S. Meeting report: The 5th International expert symposium in Fukushima on radiation and health. Environ. Health 2017, 16, 3. [Google Scholar] [CrossRef]
- Kim, J.; Bang, Y.; Lee, W.J. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis. Environ. Int. 2016, 87, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Bollaerts, K.; Fierens, S.; Van Bladel, L.; Simons, K.; Sonck, M.; Poffijn, A.; Geraets, D.; Gosselin, P.; Van Oyen, H.; Francart, J.; et al. Thyroid Cancer Incidence in the Vicinity of Nuclear Sites in Belgium, 2000–2008. Thyroid 2014, 24, 906–917. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; p. 94. [Google Scholar]
- Pellegriti, G.; De Vathaire, F.; Scollo, C.; Attard, M.; Giordano, C.; Arena, S.; Dardanoni, G.; Frasca, F.; Malandrino, P.; Vermiglio, F.; et al. Papillary Thyroid Cancer Incidence in the Volcanic Area of Sicily. J. Natl. Cancer Inst. 2009, 101, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Camacho, F.; Mangano, J.; Goldenberg, D. Evaluating for a geospatial relationship between radon levels and thyroid Cancer in Pennsylvania. Laryngoscope 2015, 125, E45–E49. [Google Scholar] [CrossRef]
- Malandrino, P.; Russo, M.; Ronchi, A.; Minoia, C.; Cataldo, D.; Regalbuto, C.; Giordano, C.; Attard, M.; Squatrito, S.; Trimarchi, F.; et al. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine 2016, 53, 471–479. [Google Scholar] [CrossRef]
- Rodrigues, A.; Arruda, M.; Garcia, P.; Rodrigues, A.; Garcia, P. Evidence of DNA damage in humans inhabiting a volcanically active environment: A useful tool for biomonitoring. Environ. Int. 2012, 49, 51–56. [Google Scholar] [CrossRef]
- Csaba, G. The Faulty Perinatal Hormonal Imprinting, As Functional Teratogen. Curr. Pediatr. Rev. 2016, 12, 222–229. [Google Scholar] [CrossRef]
- Calkins, K.; Devaskar, S.U. Fetal Origins of Adult Disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef]
- Thornburg, K.L.; Shannon, J.; Thuillier, P.; Turker, M.S. In Utero Life and Epigenetic Predisposition for Disease. Batten Dis. Diagn. Treat. Res. 2010, 71, 57–78. [Google Scholar]
- Martinez-Arguelles, D.; Campioli, E.; Culty, M.; Zirkin, B.; Papadopoulos, V. Fetal origin of endocrine dysfunction in the adult: The phthalate model. J. Biochem. Mol. Biol. 2013, 137, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Ghisari, M.; Kjeldsen, L.; Wielsøe, M.; Nørgaard-Pedersen, B.; Mortensen, E.L.; Abdallah, M.W.; Bonefeld-Jørgensen, E.C. Autism spectrum disorders, endocrine disrupting compounds, and heavy metals in amniotic fluid: A case-control study. Mol. Autism 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Strakovsky, R.S.; Schantz, S.L. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. Environ. Epigenet. 2018, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Brajenović, N.; Karačonji, I.B.; Jurič, A. Levels of polychlorinated biphenyls in human milk samples in European countries. Arch. Ind. Hyg. Toxicol. 2018, 69, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, K.L.; Vahter, M.; Palm, B.; Grandér, M.; Lignell, S.; Berglund, M. Metals and trace element concentrations in breast milk of first time healthy mothers: A biological monitoring study. Environ. Health 2012, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Arnot, J.A.; Wania, F. Revisiting the Contributions of Far- and Near-Field Routes to Aggregate Human Exposure to Polychlorinated Biphenyls (PCBs). Environ. Sci. Technol. 2018, 52, 6974–6984. [Google Scholar] [CrossRef] [PubMed]
- Spungen, J.H.; MacMahon, S.; Leigh, J.; Flannery, B.; Kim, G.; Chirtel, S.; Smegal, D. Estimated US infant exposures to 3-MCPD esters and glycidyl esters from consumption of infant formula. Food Addit. Contam. Part A 2018, 35, 1085–1092. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 2019, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Hisada, A.; Shimodaira, K.; Okai, T.; Watanabe, K.; Takemori, H.; Takasuga, T.; Koyama, M.; Watanabe, N.; Suzuki, E.; Shirakawa, M.; et al. Associations between levels of hydroxylated PCBs and PCBs in serum of pregnant women and blood thyroid hormone levels and body size of neonates. Int. J. Hyg. Environ. Health 2014, 217, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Lopez-Espinosa, M.-J.; Fernández, M.; Molina-Molina, J.-M.; Prada, R.; Olea, N. Prenatal exposure to organochlorine pesticides and TSH status in newborns from Southern Spain. Sci. Total Environ. 2011, 409, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Zarkesh, M.; Zadeh-Vakili, A.; Azizi, F.; Foroughi, F.; Akhavan, M.M.; Hedayati, M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol. Diagn. Ther. 2018, 22, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cheng, S.-Y. Epigenetic Modifications: Novel Therapeutic Approach for Thyroid Cancer. Endocrinol. Metab. 2017, 32, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.E.; Dillon, L.W.; Nikiforov, Y.E.; Wang, Y.-H. DNA fragile site breakage as a measure of chemical exposure and predictor of individual susceptibility to form oncogenic rearrangements. Carcinogenesis 2016, 38, 293–301. [Google Scholar] [CrossRef]
- Dillon, L.W.; Lehman, C.E.; Wang, Y.-H. The Role of Fragile Sites in Sporadic Papillary Thyroid Carcinoma. J. Thyroid Res. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Sources | Mechanism of Action | References |
---|---|---|---|
Chemical Pollutants | |||
PCBs | Found in coolants and lubricants, multiple cogeners, lipophilic | TR agonist/antagonist, can alter levels of T4 and TSH, thyroid-disrupting effects | [19,24] |
Pesticides | Used as pesticide on crops | Induce glucuronidate T4, accelerating metabolism | [19,20] |
PFCs | Used as stain repellents for textiles, additive to paper products, and in aqueous film forming foams used to fight electrical fires | Interfere with thyroid hormone metabolism | [16,23,25] |
BFRs | Used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability | Bind to TRs, displaces T4 from binding proteins, disrupt the thyroid homeostasis | [10,16,26,28] |
BPA | Used in plastic bottles, CDs, DVDs, thermal paper | Antagonize TR. It interferes with the synthesis and secretion of endogenous hormones binds to the TR and acts as an antagonist to T3 | [22,23] |
Phtalates | Used in cosmetics, paints, food packaging, cleaning agents and medical devices | Induction of a dose-dependent increase of VEGF secretion in MELN’s cells with constant expression of ERα receptor | [7,21] |
Perchlorates | Rocket fuel, fertilizer, smoking, production of ordnance and fireworks | Inhibits iodine uptake, exert antithyroid effects | [16,23,29] |
Metals (Cd, Mn, Pb, V) | Byproducts of incinerators, combustion of gasoline or diesel fuel, elemental components of PM10, PM2.5 (cars, trucks, airplanes), smelters, paints, insecticides, and agriculture products such as disinfectant, soil erosion | Induction of inflammation and immune response to autoantigens; production of reactive oxygen species such as NO Induction of inflammatory reaction in the thyroid through the induction of the secretion of T-helper (Th)1 chemokines into the thyroid and increase the effect of important Th1 cytokines such as (IFN)γ and (TNF)α | [30,36,39,42,43,44,45,46,47,48,49,50] |
Metalloids (I, Se) | Byproduct in the refining of these ores, glassmaking, pigments | Participate actively in protection against free radicals and oxidative damages | [3,30,45,51,52,53,54,55,56,57,58] |
Nitrates | Fertilizers | Overproduction of cellular NO, genomic instability, thyroid hypertrophy | [59,60,61,62,63,64,65,66] |
Physical factors | |||
131I | Radioactive discharges, atomic bombings, cancer therapy | Oxidative species formation at an intracellular level, DNA lesion, cell death | [45,70,71,72,73,74,75,76,77,78,79] |
Radon | Byproduct of natural radioactive decay of uranium and thorium | Oxidative species formation, DNA lesion | [75,80,81,82] |
Air pollution (PM) | Industry, natural fires, urban traffic, etc. | Induction of inflammation and immune response to autoantigens; production of reactive oxygen species such as NO | [67,68,69] |
Live in volcanic area | N.A. | DNA damage, hormesis effects | [44,83,84] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Oliveri Conti, G.; Caltabiano, R.; Buffone, A.; Zuccarello, P.; Cormaci, L.; Cannizzaro, M.A.; Ferrante, M. Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. Int. J. Environ. Res. Public Health 2019, 16, 1185. https://doi.org/10.3390/ijerph16071185
Fiore M, Oliveri Conti G, Caltabiano R, Buffone A, Zuccarello P, Cormaci L, Cannizzaro MA, Ferrante M. Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. International Journal of Environmental Research and Public Health. 2019; 16(7):1185. https://doi.org/10.3390/ijerph16071185
Chicago/Turabian StyleFiore, Maria, Gea Oliveri Conti, Rosario Caltabiano, Antonino Buffone, Pietro Zuccarello, Livia Cormaci, Matteo Angelo Cannizzaro, and Margherita Ferrante. 2019. "Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review" International Journal of Environmental Research and Public Health 16, no. 7: 1185. https://doi.org/10.3390/ijerph16071185
APA StyleFiore, M., Oliveri Conti, G., Caltabiano, R., Buffone, A., Zuccarello, P., Cormaci, L., Cannizzaro, M. A., & Ferrante, M. (2019). Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. International Journal of Environmental Research and Public Health, 16(7), 1185. https://doi.org/10.3390/ijerph16071185