Walk Score® and Its Associations with Older Adults’ Health Behaviors and Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcome Variables
- Lifestyle behaviors: (i) total physical activity, (ii) total sedentary behavior, (iii) TV viewing, (iv) driving time, (v) healthy eating behavior, (vi) alcohol use, and (vii) current smoking status
- Health outcomes: (viii) overweight/obesity, (ix) hypertension, (x) diabetes, and (xi) CVD
2.2.1. Lifestyle Behaviors
Physical Activity
Sedentary Behavior
Eating Behavior, Alcohol Use, Current Smoking Status
2.2.2. Health Outcomes
Overweight/Obesity, Hypertension, Type 2 Diabetes, CVD
2.3. Exposure Variable
2.4. Covariates
2.5. Data Analysis
3. Results
3.1. Participants’ Demographic Characteristics
3.2. Association Between Walk Score and Lifestyle Behaviors and Health Outcomes
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Berke, E.M.; Vernez-Moudon, A. Built environment change: A framework to support health-enhancing behaviour through environmental policy and health research. J. Epidemiol. Community Health 2014, 68, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Owen, N.; Fisher, E. Ecological models of health behavior. Health Behav. Theory Res. Pract. 2015, 5, 43–64. [Google Scholar]
- Glanz, K.; Rimer, B.K.; Viswanath, K. Health Behavior and Health Education: Theory, Research, and Practice, 4th ed.; Jossey-Bass: San Francisco, CA, USA, 2008. [Google Scholar]
- Chokshi, D.A.; Farley, T.A. Changing behaviors to prevent noncommunicable diseases. Science 2014, 345, 1243–1244. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Active Ageing: A Policy Framework. Available online: http://apps.who.int/iris/bitstream/10665/67215/1/WHO_NMH_NPH_02.8.pdf (accessed on 20 February 2019).
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of Walk Score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, K.; Knuiman, M.; Nathan, A.; Giles-Corti, B.; Christian, H.; Foster, S.; Bull, F. The impact of neighborhood walkability on walking: Does it differ across adult life stage and does neighborhood buffer size matter? Health Place 2014, 25, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Van Dyck, D.; Cerin, E.; Conway, T.L.; De Bourdeaudhuij, I.; Owen, N.; Kerr, J.; Cardon, G.; Frank, L.D.; Saelens, B.E.; Sallis, J.F. Associations between perceived neighborhood environmental attributes and adults’ sedentary behavior: Findings from the U.S.A., Australia and Belgium. Soc. Sci. Med. 2012, 74, 1375–1384. [Google Scholar] [CrossRef]
- Mushtaq, M.U.; Gull, S.; Mushtaq, K.; Shahid, U.; Shad, M.A.; Akram, J. Dietary behaviors, physical activity and sedentary lifestyle associated with overweight and obesity, and their socio-demographic correlates, among Pakistani primary school children. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Shibata, A.; Ishii, K.; Oka, K. Independent and Combined Associations of Physical Activity and Sedentary Behavior with Depressive Symptoms Among Japanese Adults. Int. J. Behav. Med. 2016, 23, 402–409. [Google Scholar] [CrossRef]
- Strawbridge, W.J.; Deleger, S.; Roberts, R.E.; Kaplan, G.A. Physical activity reduces the risk of subsequent depression for older adults. Am. J. Epidemiol. 2002, 156, 328–334. [Google Scholar] [CrossRef]
- Richardson, C.R.; Kriska, A.M.; Lantz, P.M.; Hayward, R.A. Physical activity and mortality across cardiovascular disease risk groups. Med. Sci. Sports Exerc. 2004, 36, 1923–1929. [Google Scholar] [CrossRef]
- O’Donovan, G.; Lee, I.; Hamer, M.; Stamatakis, E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Internal Med. 2017, 177, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk score as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Chudyk, A.M.; McKay, H.A.; Winters, M.; Sims-Gould, J.; Ashe, M.C. Neighborhood walkability, physical activity, and walking for transportation: A cross-sectional study of older adults living on low income. BMC Geriatr. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.; Dunn, P.; Hunter, I.; Owen, N.; Sugiyama, T. Walk Score and Australian adults’ home-based walking for transport. Health Place 2015, 35, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Winters, M.; Barnes, R.; Venners, S.; Ste-Marie, N.; McKay, H.; Sims-Gould, J.; Ashe, M.C. Older adults’ outdoor walking and the built environment: Does income matter? BMC Public Health 2015, 15, 876. [Google Scholar] [CrossRef] [PubMed]
- Koohsari, M.J.; Sugiyama, T.; Shibata, A.; Ishii, K.; Hanibuchi, T.; Liao, Y.; Owen, N.; Oka, K. Walk Score® and Japanese adults’ physically-active and sedentary behaviors. Cities 2018, 74, 151–155. [Google Scholar] [CrossRef]
- Chiu, M.; Shah, B.R.; Maclagan, L.C.; Rezai, M.R.; Austin, P.C.; Tu, J.V. Walk Score® and the prevalence of utilitarian walking and obesity among Ontario adults: A cross-sectional study. Health Rep. 2015, 26, 3–10. [Google Scholar]
- Chiu, M.; Rezai, M.R.; Maclagan, L.C.; Austin, P.C.; Shah, B.R.; Redelmeier, D.A.; Tu, J.V. Moving to a Highly Walkable Neighborhood and Incidence of Hypertension: A Propensity-Score Matched Cohort Study. Environ. Health Perspect. 2016, 124, 754–760. [Google Scholar] [CrossRef]
- Meline, J.; Chaix, B.; Pannier, B.; Ogedegbe, G.; Trasande, L.; Athens, J.; Duncan, D.T. Neighborhood walk score and selected Cardiometabolic factors in the French RECORD cohort study. BMC Public Health 2017, 17, 960. [Google Scholar] [CrossRef] [Green Version]
- Herrick, C.J.; Yount, B.W.; Eyler, A.A. Implications of supermarket access, neighbourhood walkability and poverty rates for diabetes risk in an employee population. Public Health Nutr. 2016, 19, 2040–2048. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Kaczynski, A.T.; Hanibuchi, T.; Shibata, A.; Ishii, K.; Yasunaga, A.; Nakaya, T.; Oka, K. Physical Activity Environment and Japanese Adults’ Body Mass Index. Int. J. Environ. Res. Public Health 2018, 15, 596. [Google Scholar] [CrossRef]
- Sugiyama, T.; Inoue, S.; Cerin, E.; Shimomitsu, T.; Owen, N. Walkable area within which destinations matter: Differences between Australian and Japanese cities. Asia Pac. J. Public Health 2015, 27, NP2757–NP2763. [Google Scholar] [CrossRef]
- Leather, J.; Fabian, H.; Gota, S.; Mejia, A. Walkability and Pedestrian Facilities in Asian Cities State and Issues; Asian Development Bank (ADB): Mandaluyong City, Phillippines, 2011. [Google Scholar]
- Perdue, W.C.; Stone, L.A.; Gostin, L.O. The built environment and its relationship to the public’s health: The legal framework. Am. J. Public Health 2003, 93, 1390–1394. [Google Scholar] [CrossRef]
- Hsueh, M.C.; Liao, Y.; Chang, S.H. Associations of Total and Domain-Specific Sedentary Time with Type 2 Diabetes in Taiwanese Older Adults. J. Epidemiol. 2016, 26, 348–354. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, I.T.; Hsu, H.H.; Chang, S.H. Perceived environmental and personal factors associated with walking and cycling for transportation in Taiwanese adults. Int. J. Environ. Res. Public Health 2015, 12, 2105–2119. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.M.; Jwo, C.J.; Yao, K.G.; Chiang, L.C.; Huang, L.H. Selection of appropriate Chinese terms to represent intensity and types of physical activity terms for use in the Taiwan version of IPAQ. J. Nurs. Res. 2008, 16, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef]
- van der Ploeg, H.P.; Chey, T.; Korda, R.J.; Banks, E.; Bauman, A. Sitting time and all-cause mortality risk in 222,497 Australian adults. Arch. Intern. Med. 2012, 172, 494–500. [Google Scholar] [CrossRef]
- Ding, D.; Sugiyama, T.; Winkler, E.; Cerin, E.; Wijndaele, K.; Owen, N. Correlates of change in adults’ television viewing time: A four-year follow-up study. Med. Sci. Sports Exerc. 2012, 44, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.A. Television-viewing characteristics of adults: Correlations to eating practices and overweight and health status. Prev. Chronic Dis. 2006, 3, A38. [Google Scholar] [PubMed]
- Dunstan, D.W.; Salmon, J.; Owen, N.; Armstrong, T.; Zimmet, P.Z.; Welborn, T.A.; Cameron, A.J.; Dwyer, T.; Jolley, D.; Shaw, J.E.; et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia 2005, 48, 2254–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, T.; Wijndaele, K.; Koohsari, M.J.; Tanamas, S.K.; Dunstan, D.W.; Owen, N. Adverse associations of car time with markers of cardio-metabolic risk. Prev. Med. 2016, 83, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.Y.; Liao, Y.; Park, J.H. Association of Motorcycle Use with Risk of Overweight in Taiwanese Urban Adults. Int. J. Environ. Res. Public Health 2017, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Administration, Ministry of Health and Welfare Daily Dietary Guideline Manual. Available online: https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1208 (accessed on 20 February 2019).
- Health Promotion Administration, Ministry of Health and Welfare Body Mass Index Test. Available online: http://health99.hpa.gov.tw/OnlinkHealth/Onlink_BMI.aspx (accessed on 20 February 2019).
- Health Promotion Administration, Ministry of Health and Welfare the Behavioral Risk Factor Surveillance System (BRFSS). Available online: https://www.hpa.gov.tw/EngPages/Index.aspx (accessed on 20 February 2019).
- Koohsari, M.J.; Sugiyama, T.; Hanibuchi, T.; Shibata, A.; Ishii, K.; Liao, Y.; Oka, K. Validity of Walk Score(R) as a measure of neighborhood walkability in Japan. Prev. Med. Rep. 2018, 9, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Nykiforuk, C.I.; McGetrick, J.A.; Crick, K.; Johnson, J.A. Check the score: Field validation of Street Smart Walk Score in Alberta, Canada. Prev. Med. Rep. 2016, 4, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walk Score® Walk Score Methodology. Available online: http://www.walkscore.com/methodology.shtml (accessed on 20 February 2019).
- Chudyk, A.M.; Winters, M.; Moniruzzaman, M.; Ashe, M.C.; Gould, J.S.; McKay, H. Destinations matter: The association between where older adults live and their travel behavior. J. Transp. Health 2015, 2, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielman, J.; Manson, H.; Chiu, M.; Copes, R.; Rosella, L.C. Residents of highly walkable neighbourhoods in Canadian urban areas do substantially more physical activity: A cross-sectional analysis. CMAJ Open 2016, 4, E720–E728. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A.; Diez Roux, A.V. Walk Score(R) and Transit Score(R) and walking in the multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2013, 45, 158–166. [Google Scholar] [CrossRef]
- Riley, D.L.; Mark, A.E.; Kristjansson, E.; Sawada, M.C.; Reid, R.D. Neighbourhood walkability and physical activity among family members of people with heart disease who participated in a randomized controlled trial of a behavioural risk reduction intervention. Health Place 2013, 21, 148–155. [Google Scholar] [CrossRef]
- Takahashi, P.Y.; Baker, M.A.; Cha, S.; Targonski, P.V. A cross-sectional survey of the relationship between walking, biking, and the built environment for adults aged over 70 years. Risk Manag. Healthc. Policy 2012, 5, 35–41. [Google Scholar] [CrossRef]
- Van Dyck, D.; Cardon, G.; Deforche, B.; Owen, N.; Sallis, J.F.; De Bourdeaudhuij, I. Neighborhood walkability and sedentary time in Belgian adults. Am. J. Prev. Med. 2010, 39, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Oka, K. Cross-sectional and prospective associations of neighbourhood environmental attributes with screen time in Japanese middle-aged and older adults. BMJ Open 2018, 8, e019608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Transportation and Communication (Ed.) 2013 Daily Transportation Report; Ministry of Transportation and Communication: Taipei, Taiwan, 2014.
- Sriram, U.; LaCroix, A.Z.; Barrington, W.E.; Corbie-Smith, G.; Garcia, L.; Going, S.B.; LaMonte, M.J.; Manson, J.E.; Sealy-Jefferson, S.; Stefanick, M.L.; et al. Neighborhood Walkability and Adiposity in the Women’s Health Initiative Cohort. Am. J. Prev. Med. 2016, 51, 722–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Wen, M.; Wang, F. Multilevel built environment features and individual odds of overweight and obesity in Utah. Appl. Geogr. 2015, 60, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, D.W.; Rolando, L.A.; Aliyu, M.H.; McGown, P.W.; Connor, L.R.; Awalt, B.M.; Holmes, M.C.; Wang, L.; Yarbrough, M.I. Modifiable Healthy Lifestyle Behaviors: 10-Year Health Outcomes from a Health Promotion Program. Am. J. Prev. Med. 2016, 51, 1027–1037. [Google Scholar] [CrossRef]
- Meyers, D.G.; Neuberger, J.S.; He, J. Cardiovascular effect of bans on smoking in public places: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2009, 54, 1249–1255. [Google Scholar] [CrossRef]
- Thorp, A.A.; Owen, N.; Neuhaus, M.; Dunstan, D.W. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am. J. Prev. Med. 2011, 41, 207–215. [Google Scholar] [CrossRef]
- Bereitschaft, B. Walk Score® versus residents’ perceptions of walkability in Omaha, N.E. J. Urban. 2018, 11, 412–435. [Google Scholar]
- Harvey, C.; Aultman-Hall, L. Measuring Urban Streetscapes for Livability: A Review of Approaches. Prof. Geogr. 2015, 68, 149–158. [Google Scholar] [CrossRef]
- Kelley, E.A.; Kandula, N.R.; Kanaya, A.M.; Yen, I.H. Neighborhood Walkability and Walking for Transport Among South Asians in the MASALA Study. J. Phys. Act. Health 2016, 13, 514–519. [Google Scholar] [CrossRef]
- Wasfi, R.A.; Dasgupta, K.; Eluru, N.; Ross, N.A. Exposure to walkable neighbourhoods in urban areas increases utilitarian walking: Longitudinal study of Canadians. J. Transp. Health 2016, 3, 440–447. [Google Scholar] [CrossRef]
- Ministry of the Interior Number of Villages, Neighborhoods, Households and Resident Population. Available online: https://www.moi.gov.tw/files/site_stuff/321/1/month/month_en.html (accessed on 20 February 2019).
- Directorate General of Budget, Accounting and Statistics Report on the Survey of Family Income and Expendture. Available online: http://win.dgbas.gov.tw/fies/e11.asp?year=105 (accessed on 20 February 2019).
Demographic Characteristics | Total | Walk Score Category | P-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Car-Dependent | Somewhat Walkable | Very Walkable | Walker’s Paradise | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
1052 | 100% | 396 | 37.6% | 136 | 12.9% | 197 | 18.7% | 323 | 30.7% | ||
Gender | <0.001 | ||||||||||
Male | 527 | 50.1% | 232 | 58.6% | 76 | 55.9% | 85 | 43.1% | 134 | 41.5% | |
Female | 525 | 49.9% | 164 | 41.4% | 60 | 44.1% | 112 | 56.9% | 189 | 58.5% | |
Age group | 0.363 | ||||||||||
65–74 years | 679 | 64.5% | 267 | 67.4% | 88 | 64.7% | 120 | 60.9% | 204 | 63.2% | |
75–84 years | 311 | 29.6% | 104 | 26.3% | 37 | 27.2% | 67 | 34.0% | 103 | 31.9% | |
85+ years | 62 | 5.9% | 25 | 6.3% | 11 | 8.1% | 10 | 5.1% | 16 | 5.0% | |
Education achievement | <0.001 | ||||||||||
Up to a high school degree | 733 | 69.7% | 319 | 80.6% | 92 | 67.6% | 140 | 71.1% | 182 | 56.3% | |
College degree or more | 319 | 30.3% | 77 | 19.4% | 44 | 32.4% | 57 | 28.9% | 141 | 43.7% | |
Occupational status | 0.005 | ||||||||||
Full-time job | 105 | 10.0% | 56 | 14.1% | 12 | 8.8% | 15 | 7.6% | 22 | 6.8% | |
No full-time job | 947 | 90.0% | 340 | 85.9% | 124 | 91.2% | 182 | 92.4% | 301 | 93.2% | |
Marital status | 0.381 | ||||||||||
Married | 795 | 75.6% | 307 | 77.5% | 104 | 76.5% | 151 | 76.6% | 233 | 72.1% | |
Not married | 257 | 24.4% | 89 | 22.5% | 32 | 23.5% | 46 | 23.4% | 90 | 27.9% | |
Living status | 0.554 | ||||||||||
Living alone | 150 | 14.3% | 50 | 12.6% | 23 | 16.9% | 27 | 13.7% | 50 | 15.5% | |
Living with others | 902 | 85.7% | 346 | 87.4% | 113 | 83.1% | 170 | 86.3% | 273 | 84.5% |
Health-Related Characteristics | Total | Walk Score Category | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Car-Dependent | Somewhat Walkable | Very Walkable | Walker’s Paradise | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
Lifestyle behaviors | |||||||||||
Total PA * | 0.251 | ||||||||||
Sufficient | 834 | 79.3% | 317 | 80.1% | 99 | 72.8% | 156 | 79.2% | 262 | 81.1% | |
Insufficient | 218 | 20.7% | 79 | 19.9% | 37 | 27.2% | 41 | 20.8% | 61 | 18.9% | |
Total SB † | <0.001 | ||||||||||
>8h/day | 326 | 31.0% | 89 | 22.5% | 38 | 27.9% | 64 | 32.5% | 135 | 41.8% | |
≤8h/day | 726 | 69.0% | 307 | 77.5% | 98 | 72.1% | 133 | 67.5% | 188 | 58.2% | |
TV viewing | 0.010 | ||||||||||
>2h/day | 560 | 53.2% | 191 | 48.2% | 65 | 47.8% | 115 | 58.4% | 189 | 58.5% | |
≤2h/day | 492 | 46.8% | 205 | 51.8% | 71 | 52.2% | 82 | 41.6% | 134 | 41.5% | |
Driving time | 0.154 | ||||||||||
>1h/day | 195 | 18.5% | 82 | 20.7% | 31 | 22.8% | 32 | 16.2% | 50 | 15.5% | |
≤1h/day | 857 | 81.5% | 314 | 79.3% | 105 | 77.2% | 165 | 83.8% | 273 | 84.5% | |
Healthy eating behavior | 0.399 | ||||||||||
Yes | 864 | 82.1% | 315 | 79.5% | 113 | 83.1% | 164 | 83.2% | 272 | 84.2% | |
No | 188 | 17.9% | 81 | 20.5% | 23 | 16.9% | 33 | 16.8% | 51 | 15.8% | |
Alcohol use | 0.701 | ||||||||||
Yes | 102 | 9.7% | 36 | 9.1% | 17 | 12.5% | 19 | 9.6% | 30 | 9.3% | |
No | 950 | 90.3% | 360 | 90.9% | 119 | 87.5% | 178 | 90.4% | 293 | 90.7% | |
Current smoking status | 0.359 | ||||||||||
Yes | 71 | 6.7% | 33 | 8.3% | 9 | 6.6% | 13 | 6.6% | 16 | 5.0% | |
No | 981 | 93.3% | 363 | 91.7% | 127 | 93.4% | 184 | 93.4% | 307 | 95.0% | |
Health outcomes | |||||||||||
BMI ‡ | 0.511 | ||||||||||
Normal | 557 | 52.9% | 200 | 50.5% | 78 | 57.4% | 108 | 54.8% | 171 | 52.9% | |
Underweight/Overweight | 495 | 47.1% | 196 | 49.5% | 58 | 42.6% | 89 | 45.2% | 152 | 47.1% | |
Hypertension | 0.489 | ||||||||||
Yes | 502 | 47.7% | 178 | 44.9% | 64 | 47.1% | 96 | 48.7% | 164 | 50.8% | |
No | 550 | 52.3% | 218 | 55.1% | 72 | 52.9% | 101 | 51.3% | 159 | 49.2% | |
Diabetes | 0.300 | ||||||||||
Yes | 201 | 19.1% | 83 | 21.0% | 28 | 20.6% | 40 | 20.3% | 50 | 15.5% | |
No | 851 | 80.9% | 313 | 79.0% | 108 | 79.4% | 157 | 79.7% | 273 | 84.5% | |
CVD § | 0.903 | ||||||||||
Yes | 198 | 18.8% | 78 | 19.7% | 27 | 19.9% | 38 | 19.3% | 55 | 17.0% | |
No | 854 | 81.2% | 318 | 80.3% | 109 | 80.1% | 159 | 80.7% | 268 | 83.0% |
Health-Related Characteristics | Walk Score Category | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Car-Dependent | Somewhat Walkable | Very Walkable | Walker’s Paradise | |||||||
OR * (95% CI †) | OR * (95% CI †) | OR * (95% CI †) | OR * (95% CI †) | |||||||
Lifestyle behaviors | ||||||||||
Total PA ‡ (ref. Insufficient) | ||||||||||
Sufficient | 1.00 | 0.65 | (0.41, | 1.03) | 0.93 | (0.60, | 1.43) | 1.01 | (0.68, | 1.49) |
Total SB § (ref. ≤ 8h/day) | ||||||||||
> 8h/day | 1.00 | 1.28 | (0.81, | 2.01) | 1.68 | (1.13, | 2.48) | 2.28 | (1.62, | 3.21) |
TV viewing (ref. ≤ 2h/day) | ||||||||||
> 2h/day | 1.00 | 0.97 | (0.65, | 1.44) | 1.47 | (1.03, | 2.09) | 1.50 | (1.10, | 2.05) |
Driving time (ref. ≤ 1h/day) | ||||||||||
> 1h/day | 1.00 | 1.18 | (0.73, | 1.90) | 0.83 | (0.52, | 1.32) | 0.75 | (0.50, | 1.14) |
Healthy eating behavior (ref. Yes) | ||||||||||
No | 1.00 | 0.81 | (0.48, | 1.36) | 0.86 | (0.54, | 1.36) | 0.82 | (0.54, | 1.23) |
Alcohol use (ref. Yes) | ||||||||||
No | 1.00 | 0.57 | (0.29, | 1.09) | 0.59 | (0.32, | 1.11) | 0.66 | (0.38, | 1.17) |
Current smoking status (ref. Yes) | ||||||||||
No | 1.00 | 1.08 | (0.48, | 2.39) | 0.79 | (0.39, | 1.61) | 1.12 | (0.57, | 2.19) |
Health outcomes | ||||||||||
BMI || (ref. Overweight/obesity) | ||||||||||
Normal | 1.00 | 1.18 | (0.79, | 1.77) | 1.13 | (0.79, | 1.61) | 1.07 | (0.78, | 1.48) |
Hypertension (ref. Yes) | ||||||||||
No | 1.00 | 0.96 | (0.64, | 1.44) | 0.90 | (0.63, | 1.28) | 0.76 | (0.55, | 1.04) |
Diabetes (ref. Yes) | ||||||||||
No | 1.00 | 1.02 | (0.63, | 1.67) | 1.05 | (0.68, | 1.61) | 1.41 | (0.94, | 2.12) |
CVD ** (ref. Yes) | ||||||||||
No | 1.00 | 0.97 | (0.59, | 1.59) | 1.06 | (0.68, | 1.65) | 1.18 | (0.79, | 1.77) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Lin, C.-Y.; Lai, T.-F.; Chen, Y.-J.; Kim, B.; Park, J.-H. Walk Score® and Its Associations with Older Adults’ Health Behaviors and Outcomes. Int. J. Environ. Res. Public Health 2019, 16, 622. https://doi.org/10.3390/ijerph16040622
Liao Y, Lin C-Y, Lai T-F, Chen Y-J, Kim B, Park J-H. Walk Score® and Its Associations with Older Adults’ Health Behaviors and Outcomes. International Journal of Environmental Research and Public Health. 2019; 16(4):622. https://doi.org/10.3390/ijerph16040622
Chicago/Turabian StyleLiao, Yung, Chien-Yu Lin, Ting-Fu Lai, Yen-Ju Chen, Bohyeon Kim, and Jong-Hwan Park. 2019. "Walk Score® and Its Associations with Older Adults’ Health Behaviors and Outcomes" International Journal of Environmental Research and Public Health 16, no. 4: 622. https://doi.org/10.3390/ijerph16040622
APA StyleLiao, Y., Lin, C. -Y., Lai, T. -F., Chen, Y. -J., Kim, B., & Park, J. -H. (2019). Walk Score® and Its Associations with Older Adults’ Health Behaviors and Outcomes. International Journal of Environmental Research and Public Health, 16(4), 622. https://doi.org/10.3390/ijerph16040622