Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. RCPs and SWAT Model
2.3. Data Sources
2.4. Data Analysis
2.4.1. Evaluation of DFAA
2.4.2. Evaluation of DFAA Impacts on Surface Water Quality
3. Results
3.1. Model Calibration and Validation
3.2. Determination of DFAA Levels in the LRB
3.3. Evolution Characteristics of DFAA
3.3.1. DFAA in Different Seasons
3.3.2. DFAA in Different Levels
3.4. The Relationship between DFAA and Water Quality
4. Discussion
4.1. Evolution of DFAA
4.2. Impacts of DFAA on Surface Water Quality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Z.W.; He, J.H.; Li, J.P.; Jiang, Z.H. The summer drought–flood coexistence in the middle and lower reaches of the Yangtze River and analysis of its air-sea background feathers in anomalous years. Chin. J. Atmos. Sci. 2006, 30, 570–577. [Google Scholar]
- Frich, P.; Alexander, L.; Dellamarta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Xu, M.; Ding, X.J.; Luo, L.S.; Chen, Z.; Xu, S. A possible cause of the low frequency circulation of summer-time drought–flood abrupt alternation over the Huaihe River Basin. Acta Meteorol. Sin. 2013, 71, 86–95. [Google Scholar]
- Shi, X.H.; Guo, W.D.; Li, W.Z.; Dai, S.; Lv, H. The sudden turn of drought and flood in spring in northern Qinghai Province, 2013: Characteristics and cause of formation. J. Glaciol. Geocryol. 2015, 37, 376–386. [Google Scholar]
- Cheng, Z.; Ding, X.J.; Xu, M.; Luo, L.S. Climate characters of typical droughts–floods abrupt alternation events in the middle-lower reaches of the Yangtze River. Resour. Environ. Yangtze Basin 2012, 21, 115–120. [Google Scholar]
- Hastenrath, S.; Polzin, D.; Mutai, C. Diagnosing the droughts and floods in equatorial East Africa during boreal autumn 2005–08. J. Clim. 2010, 23, 813–817. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; He, J.; Jiang, Z.H. Large-scale atmospheric singularities and summer long-cycle droughts–floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chin. Sci. Bull. 2006, 51, 2027–2034. [Google Scholar] [CrossRef]
- Feng, G.L.; Yang, H.W.; Zhang, S.X.; Wang, K.; Shen, B.Z. A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011. Chin. J. Atmos. Sci. 2012, 36, 1009–1026. [Google Scholar]
- Yang, S.Y.; Wu, B.Y.; Zhang, R.H.; Zhou, S.W. Relationship between an abrupt drought–flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia. Acta Meteorol. Sinica 2013, 27, 129–143. [Google Scholar] [CrossRef]
- Shen, B.Z.; Zhang, S.X.; Yang, H.W.; Wang, K.; Feng, G.L. Analysis of characteristics of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in spring and summer in 2011. Acta Phys. Sin. 2012, 61, 530–540. [Google Scholar]
- Li, M.; Zhu, C.W.; Pang, Y.S. Possible causes of abrupt turning from drought to flooding in the middle and lower reaches of Yangtze River valley during spring to summer of 2011. J. Meteorol. Environ. 2014, 30, 70–78. [Google Scholar]
- Ma, P.H.; Yang, Y.J.; Liu, T.J. Cause analysis for the sharp turn from drought to flood in the middle and lower reaches of the Yangtze River during 2011. Meteorol. Disaster Reduct. Res. 2014, 37, 1–6. [Google Scholar]
- Li, X.; Ye, X. Spatiotemporal characteristics of dry-wet abrupt transition based on precipitation in Poyang Lake basin, China. Water 2015, 7, 1943–1958. [Google Scholar] [CrossRef]
- Zhang, S.F.; Zhang, J.C.; Min, J.J.; Zhang, Z.X.; Zhuang, J.Y.; Lin, J. Drought–flood abrupt alternation based on runoff in the Huaihe River Basin during rainy season. J. Lake Sci. 2012, 24, 679–686. [Google Scholar]
- Wang, J.; Duan, L.Y.; He, Q.Y.; Wu, Z.L.; Chen, H.; Zhang, N. Drought–flood abrupt alternation events of Haihe River Basin in main rainy season and their relationships with the anomalous atmospheric circulation. J. Trop. Meteorol. 2016, 32, 1–9. [Google Scholar]
- Yan, D.H.; Wu, D.; Huang, R.; Wang, L.N.; Yang, G.Y. Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin. Hydrol. Earth Syst. Sci. 2013, 17, 2859. [Google Scholar] [CrossRef]
- Zhou, X.; Li, L.; Shan, S.H.; Liu, D.W.; Zhou, H.; Liu, Y. Effect of abrupt droughts–floods on physiology and biochemistry of different peanut varieties. Chin. J. Oil Crop Sci. 2012, 34, 56–61. [Google Scholar]
- Deng, Y. The effect of drought–flood abrupt alternation on yield formation and its physiological traits in double-season super hybrid rice. Ph.D. Thesis, Jiangxi Agricultural University, Nanchang, China, 2015. [Google Scholar]
- Hu, L.M.; Shi, X.F.; Wang, G.Q.; Qiao, S.Q.; Yang, G.; Gao, J.J.; Bai, Y.Z. Study on the geochemical characteristics of the surface sediments from the Yangtze River estuary under the 2011 sharp turn from drought to flood in middle and lower Yangtze. Geochimica 2014, 43, 39–54. [Google Scholar]
- Tian, R.; Cao, C.X.; Peng, L.; Ma, G.R.; Bao, D.M.; Guo, J.H.; Yomwan, P. The use of HJ-1A/B satellite data to detect changes in the size of wetlands in response in to a sudden turn from drought to flood in the middle and lower reaches of the Yangtze River system in China. Geomat. Nat. Hazards Risk 2016, 7, 287–307. [Google Scholar] [CrossRef]
- Barros, M.C.; Mendo, M.J.M.; Negrão, F.C.R. Surface water quality in Portugal during a drought period. Sci. Total Environ. 1995, 171, 69–76. [Google Scholar] [CrossRef]
- Mimikou, M.A.; Baltas, E.; Varanou, E.; Pantazis, K. Regional impacts of climate change on water resources quantity and quality indicators. J. Hydrol. 2000, 234, 95–109. [Google Scholar] [CrossRef]
- Murdoch, P.S.; Baron, J.S.; Miller, T.L. Potential effects of climate change on surface-water quality in North America. JAWRA 2000, 36, 347–366. [Google Scholar]
- Caruso, B.S. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 2002, 257, 115–133. [Google Scholar] [CrossRef]
- Zhu, Z.; Arp, P.A.; Mazumder, A.; Meng, F.R.; Bourque, C.P.A.; Foster, N.W. Modeling stream water nutrient concentrations and loadings in response to weather condition and forest harvesting. Ecol. Model. 2005, 185, 231–243. [Google Scholar] [CrossRef]
- Chen, B.F. Study on the impacts of drought on water environment in Majia River Basin. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2013. [Google Scholar]
- Chouyyok, W.; Wiacek, R.J.; Pattamakomsan, K.; Sangvanich, T.; Grudzien, R.M.; Fryxell, G.E. Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ. Sci. Technol. 2010, 44, 3073–3078. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.L.; He, Z.Y.; Zhang, T.Y.; Chen, X.Y. Impacts of sudden drought to flood change on manufacture livelihood and ecology. Resour. Environ. Yangtze Basin 2013, s1, 108–115. [Google Scholar]
- Xiao, M.; Yu, S.; Wang, Y.Y.; Huang, R. Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors. Water Sci. Eng. 2013, 6, 164–177. [Google Scholar]
- Minister of Environmental Protection of the People’s Republic of China. Available online: http://www.zhb.gov.cn/gkml/hbb/qt/201706/t20170605_415442.htm (accessed on 16 December 2018).
- Zhu, X.C.; Wang, L.M.; Liu, J.X. Analysis and measures to water resources utilization in Luanhe River Basin. Haihe Water Resour. 2015, 1, 6–8. [Google Scholar]
- Hou, X.L.; Huang, Y. Characteristics and influential factors analysis on the quality of Luan River water and groundwater. Environ. Prot. Circ. Econ. 2017, 03, 41–45. [Google Scholar]
- Shi, X.L.; Yang, Z.Y.; Yan, D.H.; Li, Y.; Yuan, Z. On hydrological response to land-use/cover change in Luanhe River Basin. Adv. Water Sci. 2014, 25, 21–27. [Google Scholar]
- Li, Y.; Huang, S.L. Hydrological responses to land use change under three future scenarios in Luanhe River Basin. Chin. J. Ecol. 2016, 7, 1970–1980. [Google Scholar]
- Yuan, Z. Drought Risk Assessment and Its Coping Strategies under Changing Environments: A Case Study in Luanhe River Basin. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2016. [Google Scholar]
- Yuan, Z.; Yang, Z.Y.; Yan, D.H.; Yin, J. Historical changes and future projection of extreme precipitation in China. Theor. Appl. Climatol. 2017, 127, 393–407. [Google Scholar] [CrossRef]
- Williams, J.; Nearing, M.; Nicks, A.; Skidmore, E.; Valentin, C.; King, K.; Savabi, R. Using soil erosion models for global change studies. J. Soil Water Conserv. 1996, 51, 381–385. [Google Scholar]
- Cai, Y.M.; Zhang, K.L.; Li, S.C. Study on the conversion of different soils texture. Acta Pedol. Sin. 2003, 40, 511–517. [Google Scholar]
- Tong, C.L.; Zhang, W.J.; Tang, Y.; Wang, H.Q. Estimation of Daily Solar Radiation in China. Chin. J. Agrometeorol. 2005, 26, 165–169. [Google Scholar]
- Yuan, Z.; Yan, D.H.; Yang, Z.Y.; Yin, J. Ensemble model and its application in runoff simulation and forecast. J. Hydraul. Eng. 2014, 3, 351–359. [Google Scholar]
- Bi, W.X.; Weng, B.S.; Yuan, Z.; Ye, M.; Zhang, C.; Zhao, Y.; Yan, D.M.; Xu, T. Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. Int. J. Env. Res. Public Health 2018, 15, 1724. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of China (2002). Environmental Quality Standards for Surface Water (GB3838-2002). Available online: http://datacenter.mep.gov.cn/websjzx/dataproduct/resourceQuery/querymeta.vm?dataId=66497 (accessed on 16 December 2018).
- The Ministry of Water Resources of the People’s Republic of China. Standard of Classification for Drought Severity (SL424-2008); China Water & Power Press: Beijing, China, 2008. [Google Scholar]
- Liu, S.H. The rainfall infiltration coefficient research based on high frequency water level dynamic monitoring in the north China plain. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2013. [Google Scholar]
- Kaste, Ã.; Wright, R.F.; Barkved, L.J.; Bjerkeng, B.; Engen-Skaugen, T.; Magnusson, J.; Saelthun, N.R. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Sci. Total Environ. 2006, 365, 200–222. [Google Scholar] [CrossRef] [PubMed]
- Ducharne, A. Importance of stream temperature to climate change impact on water quality. Hydrol. Earth Syst. Sci. 2008, 4, 797–810. [Google Scholar] [CrossRef]
- Stocker, T. IPCC, 2013: Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2013, 18, 95–123. [Google Scholar]
- Curriero, F.; Patz, J.; Rose, J.; Lele, S. Analysis of the association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Epidemiology 2001, 12, S37. [Google Scholar]
- Panda, R.K.; Behera, S. Non-point source pollution of water resources: Problems and perspectives. J. Food Agric. Environ. 2003, 1, 308–311. [Google Scholar]
- Hilscherova, K.; Dusek, L.; Kubik, V.; Cupr, P.; Hofman, J.; Klanova, J.; Holoubek, I. Redistribution of organic pollutants in river sediments and alluvial soils related to major floods. J. Soils Sediments 2007, 7, 167–177. [Google Scholar] [CrossRef]
- Xia, X.H.; Wu, Q.; Mou, X.L. Advances in impacts of climate change on surface water quality. Adv. Water Sci. 2012, 23, 124–133. [Google Scholar]
Data Type | Scale | Data Source | |
---|---|---|---|
Topography | Digital Elevation Model (DEM) | Grid 90 m × 90 m | SRTM data (http://srtm.csi.cgiar.org/index.asp) |
Land use | Dataset of 1985, 2000 and 2014 | Resource and Environment Data Cloud Platform of the Chinese Academy of Sciences (http://www.resdc.cn) | |
Soil | 1:1,000,000 | The Second National Land Survey (http://www.soil.csdb.cn) | |
Meteorology | Daily datasets of basic meteorological elements for China’s national surface meteorological stations (v3.0) | 46 stations (from 1963 to 2017) | China Meteorological Data Service Center (http://data.cma.cn) |
RCPs | Grid 1° × 1° (from 2020 to 2050) | IPCC Fifth Assessment Report | |
Hydrology | Monthly observed flow data | 5 stations (from 1970 to 2000) | Hydrological Yearbook |
Water quality | Monthly TN and TP load | Luanxian Station (from 2015 to 2017) | Measured data |
Season | Continuous Rainless Days (d) | ||
---|---|---|---|
Light Drought | Moderate Drought | Severe Drought | |
Spring (Mar. to May) | 15–30 | 31–50 | >51 |
Summer (Jun. to Aug.) | 10–20 | 21–30 | >31 |
Autumn (Sept. to Nov.) | 15–30 | 31–50 | >51 |
Winter (Dec. to Feb.) | 20–30 | 31–60 | >61 |
Level | Light Flood (LF) 1 | Moderate Flood (MF) 2 | Severe Flood (SF) 3 |
---|---|---|---|
Light drought (LD) 1 | LD-LF 1 | LD-MF 1.5 | LD-SF 2 |
Moderate drought (MD) 2 | MD-LF 1.5 | MD-MF 2 | MD-SF 2.5 |
Severe drought (SD) 3 | SD-LF 2 | SD-MF 2.5 | SD-SF 3 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
(mm) | 17 | 18 | 19 | 20 | 22 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Light flood | 50 | 60 | 75 | 90 | 110 |
Moderate flood | 70 | 85 | 100 | 120 | 150 |
Severe flood | 85 | 110 | 130 | 160 | 200 |
Scenario | TN Pollution | TP Pollution | TN and TP Pollution | ||||||
---|---|---|---|---|---|---|---|---|---|
DFAA Months | Normal Months | Total Months | DFAA Months | Normal Months | Total Months | DFAA Months | Normal Months | Total Months | |
RCP2.6 | 97.30% | 69.25% | 72.04% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
RCP4.5 | 97.14% | 69.73% | 72.31% | 2.86% | 0.59% | 0.81% | 2.86% | 0.59% | 0.81% |
RCP8.5 | 94.59% | 67.46% | 70.16% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Scenario | TN Pollution | TP Pollution | TN and TP Pollution | ||||||
---|---|---|---|---|---|---|---|---|---|
DFAA Months | Normal Months | Total Months | DFAA Months | Normal Months | Total Months | DFAA Months | Normal Months | Total Months | |
RCP2.6 | 97.30% | 76.42% | 78.49% | 13.51% | 1.49% | 2.69% | 13.51% | 1.49% | 2.69% |
RCP4.5 | 97.14% | 77.45% | 79.30% | 11.43% | 1.48% | 2.42% | 11.43% | 1.48% | 2.42% |
RCP8.5 | 97.30% | 77.01% | 79.03% | 8.11% | 0.90% | 1.61% | 8.11% | 0.90% | 1.61% |
Scenario | TN Pollution | TP Pollution | TN and TP Pollution | ||||||
---|---|---|---|---|---|---|---|---|---|
Light DFAA | Moderate DFAA | Severe DFAA | Light DFAA | Moderate DFAA | Severe DFAA | Light DFAA | Moderate DFAA | Severe DFAA | |
RCP2.6 | 97.14% | 100.00% | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
RCP4.5 | 96.30% | 100.00% | 100.00% | 3.70% | 0.00% | 0.00% | 3.70% | 0.00% | 0.00% |
RCP8.5 | 92.86% | 100.00% | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Scenario | TN Pollution | TP Pollution | TN and TP Pollution | ||||||
---|---|---|---|---|---|---|---|---|---|
Light DFAA | Moderate DFAA | Severe DFAA | Light DFAA | Moderate DFAA | Severe DFAA | Light DFAA | Moderate DFAA | Severe DFAA | |
RCP2.6 | 97.14% | 100.00% | 100.00% | 14.29% | 0.00% | 0.00% | 14.29% | 0.00% | 0.00% |
RCP4.5 | 96.30% | 100.00% | 100.00% | 14.81% | 0.00% | 0.00% | 14.81% | 0.00% | 0.00% |
RCP8.5 | 92.86% | 100.00% | 100.00% | 0.00% | 16.67% | 66.67% | 0.00% | 16.67% | 66.67% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, W.; Weng, B.; Yuan, Z.; Yang, Y.; Xu, T.; Yan, D.; Ma, J. Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2019, 16, 691. https://doi.org/10.3390/ijerph16050691
Bi W, Weng B, Yuan Z, Yang Y, Xu T, Yan D, Ma J. Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. International Journal of Environmental Research and Public Health. 2019; 16(5):691. https://doi.org/10.3390/ijerph16050691
Chicago/Turabian StyleBi, Wuxia, Baisha Weng, Zhe Yuan, Yuheng Yang, Ting Xu, Dengming Yan, and Jun Ma. 2019. "Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin" International Journal of Environmental Research and Public Health 16, no. 5: 691. https://doi.org/10.3390/ijerph16050691
APA StyleBi, W., Weng, B., Yuan, Z., Yang, Y., Xu, T., Yan, D., & Ma, J. (2019). Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. International Journal of Environmental Research and Public Health, 16(5), 691. https://doi.org/10.3390/ijerph16050691