Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Compositions
2.2. Reactors
2.3. Measurement Methods
2.4. Reactor Start-Up and Operation Parameters
2.5. Microbial Diversity
2.6. Data Analysis
3. Results and Discussion
3.1. Reactor Performance
3.2. Membrane Fouling
3.3. Microbial Diversity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gong, R.; Li, M.; Yang, C.; Sun, Y.; Chen, J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater. 2005, 121, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, A.; Sahinkaya, E.; Aktaş, Ö.; Uçar, D.; Çınar, Ö.; Wang, Z. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresour. Technol. 2015, 192, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Doumic, L.I.; Soares, P.A.; Ayude, M.A.; Cassanello, M.; Boaventura, R.A.; Vilar, V.J. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chem. Eng. J. 2015, 277, 86–96. [Google Scholar] [CrossRef]
- Lin, P.J.; Yang, M.C.; Li, Y.L.; Chen, J.H. Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane distillation used in dyeing wastewater treatment. J. Membr. Sci. 2015, 475, 511–520. [Google Scholar] [CrossRef]
- An, A.K.; Guo, J.; Jeong, S.; Lee, E.J.; Tabatabai, S.A.A.; Leiknes, T. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Res. 2016, 103, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Punzi, M.; Nilsson, F.; Anbalagan, A.; Svensson, B.M.; Jönsson, K.; Mattiasson, B.; Jonstrup, M. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. J. Hazard. Mater. 2015, 292, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ren, H.; Yin, E.; Tang, S.; Li, Y.; Cao, J. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis. Environ. Sci. Pollut. Res. 2015, 22, 9483–9493. [Google Scholar] [CrossRef] [PubMed]
- Hayat, H.; Mahmood, Q.; Pervez, A.; Bhatti, Z.A.; Baig, S.A. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep. Purif. Technol. 2015, 154, 149–153. [Google Scholar] [CrossRef]
- Manavi, N.; Kazemi, A.S.; Bonakdarpour, B. The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chem. Eng. J. 2017, 312, 375–384. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.; Jin, Y. Use of a ceramic membrane bioreactor (CMBR) to treat wastewater at Guilin University of Technology. Water Pract. Technol. 2017, 12, 453–462. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.; Jin, Y. Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: Anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor. Bioresour. Technol. 2018, 269, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; McCarty, P.L.; Shin, C.; Bae, J.; Kim, J. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresour. Technol. 2017, 240, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, X.; Wang, D.; Jin, Y. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor. Bioresour. Technol. 2017, 243, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhang, Y.; Liu, Y.; El-Din, M.G. Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane. Water Res. 2016, 88, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Hatamoto, M.; Yamashita, T.; Noguchi, H.; Takase, O.; Kekre, K.A.; Ang, W.S.; Tao, G.; Seah, H.; Yamaguchi, T. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater. Bioresour. Technol. 2016, 218, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, L.; Jin, Y. Performance and microbial diversity of an upflow anaerobic sludge blanket reactor in fluorescent whitening agent wastewater treatment. Desalin. Water Treat. 2018, 114, 13–18. [Google Scholar] [CrossRef]
- Wenjie, Z.; Dunqiu, W.; Yasunori, K.; Taichi, Y.; Li, Z.; Kenji, F. PVA-gel beads enhance granule formation in a UASB reactor. Bioresour. Technol. 2008, 99, 8400–8405. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Method for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Wenjie, Z.; Huaqin, W.; Joseph, D.R.; Yue, J. Granular activated carbon as nucleus for formation of Anammox granules in an expanded granular-sludge-bed reactor. Glob. NEST J. 2015, 17, 508–514. [Google Scholar]
- Yue, J.; Qinglin, X.; Wenjie, Z. High-strength ethylene glycol wastewater treatment in anaerobic polyvinyl alcohol gel beads based biofilm reactor. Glob. NEST J. 2016, 18, 46–54. [Google Scholar]
- Yue, J.; Wenjie, Z. NaH2PO4 as pH buffer in an anaerobic ammonium oxidation (anammox) reactor treating high-strength livestock manure digester liquor. Desalin. Water Treat. 2016, 57, 27028–27034. [Google Scholar]
- Ramesh, A.; Lee, D.J.; Lai, J.Y. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Appl. Microbiol. Biot. 2007, 74, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, D.; Zhang, W. Treatment of high-strength ethylene glycol waste water in an expanded granular sludge blanket reactor: Use of PVA-gel beads as a biocarrier. SpringerPlus 2016, 5, 856. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, N.; Yang, B.; Yu, C.; Zhang, Q.; Zheng, X.; Xu, L.; Li, R.; Liu, J. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. Int. Biodeterior. Biodegrad. 2016, 111, 14–21. [Google Scholar] [CrossRef]
- Li, W.W.; Zhang, Y.; Zhao, J.B.; Yang, Y.L.; Zeng, R.J.; Liu, H.Q.; Feng, Y.J. Synergetic decolorization of reactive blue 13 by zero-valent iron and anaerobic sludge. Bioresour. Technol. 2013, 149, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Cheng, X.; Sun, D.; Ren, Y.; Xu, G. Formation characteristics of an anoxygenic photosynthetic bacterial biofilm in a photorotating biological contactor for azo dye wastewater treatment. J. Chem. Technol. Biotechnol. 2015, 90, 176–184. [Google Scholar] [CrossRef]
- Balapure, K.; Bhatt, N.; Madamwar, D. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol. 2015, 175, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.; Spennati, F.; Melone, A.; Petroni, G.; Verni, F.; Munz, G.; Mori, G.; Vannini, C. Biological Sulfur-Oxidizing Potential of Primary and Biological Sludge in a Tannery Wastewater Treatment Plant. Water Air Soil Pollut. 2015, 226, 391. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Annamalai, U. Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Gotovtsev, P.M.; Yuzbasheva, E.Y.; Gorin, K.V.; Butylin, V.V.; Badranova, G.U.; Perkovskaya, N.I.; Mostova, E.B.; Namsaraev, Z.B.; Rudneva, N.I.; Komova, A.V.; et al. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. Appl. Biochem. Microbiol. 2015, 51, 792–803. [Google Scholar] [CrossRef]
pH | Color | Chroma | Salinity (g/L) | COD (mg/L) | BOD5 (mg/L) | TN (mg/L) | NH4+–N (mg/L) | TP (mg/L) |
---|---|---|---|---|---|---|---|---|
1.0 | Navy blue | 10,000 | 2.5–3 | 17,000–19,000 | 680–760 | 264–300 | 241–260 | 0.1–1.7 |
No. | Biodiversity |
---|---|
1 | 1.412 |
2 | 2.325 |
3 | 1.999 |
4 | 1.672 |
5 | 1.935 |
6 | 1.957 |
7 | 1.660 |
8 | 1.777 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Wang, D.; Zhang, W. Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater. Int. J. Environ. Res. Public Health 2019, 16, 777. https://doi.org/10.3390/ijerph16050777
Jin Y, Wang D, Zhang W. Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater. International Journal of Environmental Research and Public Health. 2019; 16(5):777. https://doi.org/10.3390/ijerph16050777
Chicago/Turabian StyleJin, Yue, Dunqiu Wang, and Wenjie Zhang. 2019. "Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater" International Journal of Environmental Research and Public Health 16, no. 5: 777. https://doi.org/10.3390/ijerph16050777
APA StyleJin, Y., Wang, D., & Zhang, W. (2019). Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater. International Journal of Environmental Research and Public Health, 16(5), 777. https://doi.org/10.3390/ijerph16050777