Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Selection of Micropollutants
2.3. Detection of Micropollutants
2.4. Membrane Bioreactor
3. Results and Discussion
3.1. Overall Performance of MBR
3.2. Micropollutant Removal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAS | Conventional Activated Sludge |
COD | Chemical Oxygen Demand |
DAD | Diode Array Detector |
DO | Dissolved Oxygen |
EDC | Endocrine Disrupting Compound |
HPLC | High Performance Liquid Chromatography |
HRT | Hydraulic Retention Time |
MBR | Membrane Bioreactor |
MF | Microfiltration |
MLSS | Mixed Liquor Suspended Solids |
NF | Nanofiltration |
NO3-N | Nitrate-Nitrogen |
PHACs | Pharmaceutically Active Compounds |
PVDF | polyvinylidene difluoride |
RO | Reverse Osmosis |
SRT | Solid Retention Time |
TAN | Total Ammonia Nitrogen |
TSS | Total Suspended Solids |
UF | Ultrafiltration |
References
- Falconer, I.R.; Chapman, H.F.; Moore, M.R.; Ranmuthugala, G. Endocrine-disrupting compounds: A review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 2006, 21, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Wert, E.C.; Yoon, J. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 2007, 202, 16–23. [Google Scholar] [CrossRef]
- Gillesby, B.E.; Zacharewski, T.R. Exoestrogens: Mechanisms of action and strategies for identification and assessment. Environ. Toxicol. Chem. 1998, 17, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- Vasiliadou, I.A.; Molina, R.; Martínez, F.; Melero, J.A. Biological removal of pharmaceutical and personal care products by a mixed microbial culture: Sorption, desorption and biodegradation. Biochem. Eng. J. 2013, 81, 108–119. [Google Scholar] [CrossRef]
- Campo, J.; Masiá, A.; Blasco, C.; Picó, Y. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J. Hazard. Mater. 2013, 263, 146–157. [Google Scholar] [PubMed]
- Nam, S.W.; Jo, B.I.; Yoon, Y.; Zoh, K.D. Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere 2014, 95, 156–165. [Google Scholar]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.A.; Westerhoff, P.; Yoon, Y.; Sedlak, D.L. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environ. Eng. Sci. 2003, 20, 449–469. [Google Scholar] [CrossRef]
- Spring, J.; Bagley, D.M.; Andrews, R.C.; Lemanik, S.; Yang, P. Removal of endocrine disrupting compounds using a membrane bioreactor and disinfection. J. Environ. Eng. Sci. 2007, 6, 131–137. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.R.; Shin, H.S.; Yang, F.; Zhou, Z. Recent Advances in Membrane Bioreactors: Configuration Development, Pollutant Elimination, and Sludge Reduction. Environ. Eng. Sci. 2012, 29, 139–160. [Google Scholar] [CrossRef]
- Cases, V.; Alonso, V.; Argandoña, V.; Rodriguez, M.; Prats, D. Endocrine disrupting compounds: A comparison of removal between conventional activated sludge and membrane bioreactors. Desalination 2011, 272, 240–245. [Google Scholar] [CrossRef]
- Howell, J.A. Future of membranes and membrane reactors in green technologies and for water reuse. Desalination 2004, 162, 1–11. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef]
- Hai, F.I.; Tessmer, K.; Nguyen, L.N.; Kang, J.; Price, W.E.; Nghiem, L.D. Removal of micropollutants by membrane bioreactor under temperature variation. J. Membr. Sci. 2011, 383, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresour. Technol. 2013, 144, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.K.; Kim, H.W.; Oh, J.; Park, H. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011, 409, 4351–4360. [Google Scholar] [CrossRef]
- Alturki, A.A.; Tadkaew, N.; McDonald, J.A.; Khan, S.J.; Price, W.E.; Nghiem, L.D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J. Membr. Sci. 2010, 365, 206–215. [Google Scholar] [CrossRef]
- Comerton, A.M.; Andrews, R.C.; Bagley, D.M.; Hao, C. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. J. Membr. Sci. 2008, 313, 323–335. [Google Scholar] [CrossRef]
- Kimura, K.; Amy, G.; Drewes, J.E.; Heberer, T.; Kim, T.U.; Watanabe, Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003, 227, 113–121. [Google Scholar] [CrossRef]
- Schäfer, A.; Nghiem, L.; Waite, T. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ. Sci. Technol. 2003, 37, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.M.; Watts, M.J.; Wickramasinghe, S.R. A nanofiltration decision tool for potable reuse: A new rejection model for recalcitrant CECs. Water Environ. Res. 2017, 89, 1942–1951. [Google Scholar] [CrossRef]
- Phan, H.V.; Hai, F.I.; Kang, J.; Dam, H.K.; Zhang, R.; Price, W.E.; Broeckmann, A.; Nghiem, L.D. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR). Bioresour. Technol. 2014, 165, 96–104. [Google Scholar] [CrossRef]
- Mann, L. Spectrophotometric Determination of Nitrogen in Total Micro-Kjeldahl Digests. Application of the Phenol-Hypochlorite Reaction to Microgram Amounts of Ammonia in a Total Digest of Biological Material. Anal. Chem. 1963, 13, 2179–2182. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Hu, J.Y.; Chen, X.; Tao, G.; Kekred, K. Fate of endocrine disrupting compounds in membrane bioreactor systems. Environ. Sci. Technol. 2007, 41, 4097–4102. [Google Scholar] [CrossRef]
- Tambosi, J.L.; de Sena, R.F.; Favier, M.; Gebhardt, W.; José, H.J.; Schröder, H.F.; Moreira, R. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 2010, 261, 148–156. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: Breakthrough behavior of persistent and hydrophilic compounds. J. Environ. Man. 2013, 119, 173–181. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, M.; Dong, J.; Sun, C.; Chen, G. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF. Int. J. Environ. Res. Public Health. 2018, 15, 269. [Google Scholar] [CrossRef]
- Le, T.; Ng, C.; Tran, N.H.; Chen, H.; Gin, K.Y. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res. 2018, 145, 498–508. [Google Scholar] [CrossRef]
- Song, X.; McDonald, J.; Price, W.E.; Khan, S.J.; Hai, F.I.; Ngo, H.H.; Guo, W.; Nghiem, L.D. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Bioresour. Technol. 2016, 216, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Lesjean, B.; Gnirss, R.; Buisson, H.; Keller, S.; Tazi-Pain, A.; Luck, F. Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR). Water Sci. Tech. 2005, 52, 453–460. [Google Scholar] [CrossRef]
- Xiao, Y.; Yaohari, H.; De Araujo, C.; Sze, C.C.; Stuckey, D.C. Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chem. Eng. J. 2017, 321, 335–345. [Google Scholar] [CrossRef]
- Trinh, T.; Akker, B.; Stuetz, R.M.; Coleman, H.M.; Le-Clech, P.; Khan, S.J. Removal of trace organic chemical contaminants by a membrane bioreactor. Water Sci. Technol. 2012, 66, 1856–1863. [Google Scholar] [CrossRef]
Compound | Molecular Weight (g/mol) | Structure | Log D (pH = 8) | Water Solubility (ppm) |
---|---|---|---|---|
Amoxicillin, Antibiotic (C16H19N3O5S) | 365 | −2.56 | 3.4 × 103 | |
Acetaminophen, Pharmaceutical (C8H9NO2) | 151 | 0.33 | 1.4 × 104 | |
Atrazine, Herbicide (C8H14ClN5) | 216 | 2.63 | 34.7 | |
Estrone, Hormone (C18H22O2) | 270 | 3.68 | 30 | |
Triclosan, Antibacterial C12H7Cl3O2 | 290 | 4.76 | 10 |
Compound | Detection Limit (ppb) | Detection Wavelength (nm) |
---|---|---|
Amoxicillin | 5 | 198 |
Acetaminophen | 5 | 198 |
Atrazine | 5 | 222 |
Estrone | 5 | 194 |
Triclosan | 12.5 | 198 |
Wastewater Quality Parameter | COD (ppm) | TAN (ppm) | NO3-N (ppm) |
---|---|---|---|
Initial wastewater from treatment plant | 484 | 25.6 | 12.7 |
Anoxic tank before micropollutant addition | 578 | 8.4 | 3.6 |
Aerobic tank before micropollutant addition | 614 | 11.1 | 6.3 |
Anoxic tank after 12 h operation | 350 | 4.6 | 3.0 |
Aerobic tank after 12 h operation | 24 | 0 | 1.4 |
Effluent | 8 | 0 | 1.6 |
Micropollutants | Process | Removal (%) | Reference |
---|---|---|---|
Acetaminophen | Pilot-MBR, actual wastewater | 100 | [30] |
Lab-scale MBR, synthetic wastewater | 95 | [31] | |
This study | 100 | ||
Amoxicillin | Pilot-MBR, synthetic wastewater | 77 | [32] |
MBR, actual wastewater | 100 | [33] | |
This study | 100 | ||
Atrazine | Lab-scale MBR, synthetic wastewater | 40 | [34] |
Lab-scale MBR, synthetic wastewater | 8 | [26] | |
This study | <25 | ||
Estrone | Lab-scale MBR, synthetic wastewater | >90 | [18] |
Pilot-MBR, synthetic wastewater | 88 | [32] | |
Pilot-MBR, actual wastewater | 95–100 | [35] | |
This study | 98 | ||
Triclosan | Lab-scale MBR, synthetic wastewater | >90 | [36] |
MBR, actual wastewater | 98 | [37] | |
This study | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaz, M.; Wickramasinghe, S.R.; Eswaranandam, S.; Zhang, W.; Jones, S.M.; Watts, M.J.; Qian, X. Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor. Int. J. Environ. Res. Public Health 2019, 16, 1363. https://doi.org/10.3390/ijerph16081363
Kamaz M, Wickramasinghe SR, Eswaranandam S, Zhang W, Jones SM, Watts MJ, Qian X. Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor. International Journal of Environmental Research and Public Health. 2019; 16(8):1363. https://doi.org/10.3390/ijerph16081363
Chicago/Turabian StyleKamaz, Mohanad, S. Ranil Wickramasinghe, Satchithanandam Eswaranandam, Wen Zhang, Steven M. Jones, Michael J. Watts, and Xianghong Qian. 2019. "Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor" International Journal of Environmental Research and Public Health 16, no. 8: 1363. https://doi.org/10.3390/ijerph16081363
APA StyleKamaz, M., Wickramasinghe, S. R., Eswaranandam, S., Zhang, W., Jones, S. M., Watts, M. J., & Qian, X. (2019). Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor. International Journal of Environmental Research and Public Health, 16(8), 1363. https://doi.org/10.3390/ijerph16081363