1. Introduction
Public health issues have attracted attention from all around the world. Additionally, the ways to solve the problems of allocation of medical resources have become a matter of significance. Evidently, the problem of uneven medical allocation in developing countries is very prominent. In China, a developing country, the large population and scarce medical resources represent a contradiction that is difficult to eliminate, especially in Chinese rural areas [
1]. As a new type of medical service to solve patients’ (“patients” in this text means “people that use or have experience of using OMWs”) basic medical problems remotely and provide a health consultation service online, Internet medical care gives us hope to eliminate the above contradiction. In recent years, with the support of the Chinese government [
2,
3,
4], the Internet medical and health industry, represented by online medical websites (OMWs), has been developing rapidly. Currently, Chinese OMWs like Chunyuyisheng (
www.chunyuyisheng.com) and Haodaifu Online (
www.haodf.com) are providing services for countless patients with successful results. However, our pre-test with a sample of 100 research participants in 2018 indicated that only 21% of them have ever used OMWs, which means Chinese OMWs are yet to received wide acceptance among patients. Therefore, it is crucial to explore the key factors affecting patients’ behavioral intention (BI) towards OMWs in order to promote the rational distribution of medical resources and to help achieve greater public health.
The rise of Internet medicine in China is an inevitable result. Combining the reports of iResearch (iResearch Inc, Shanghai, China) and the actual situation in China, we summarize several reasons for this: (1) a surge in health-care needs caused by population aging [
5] and the increasing in the prevalence and range of chronic diseases in China [
6]; (2) inadequate supply of medical resources. The annual growth rate of the number of diagnosed and treated patients (8.52%) during 2004–2014 was much higher than that of certified/assistant physicians (3.69%) [
7], and medical conditions in rural areas lag far behind cities [
8,
9]; (3) unbalanced allocation of medical resources. Hospitals in big cities attract a large number of patients by virtue of their popularity and well-known doctors, forming a siphonic effect [
10]. The utilization rate of medical resources in developed cities is low, but the medical resources in rural areas are insufficient, so the problem of medical resource allocation appears [
11]. OMWs, however, eliminate the limitations of time and space, allowing patients to access basic medical and health services through the Internet whenever and wherever. Consequently, promoting the OMWs will foster the Chinese medical and health industry.
Chinese OMWs have existed for over 10 years, but they have been used more frequently in recent years. For example, Haodaifu Online and Chunyuyisheng, which are two representative websites of OMWs, were built in 2006 and 2011. Nowadays, their daily average usage is around 200,000. OMWs allow patients to visit the websites at any time and in any place to seek basic medical help or health information from certified doctors, which is convenient and meets the needs of patients. This is illustrated by the example of Haodaifu Online, which contains more than 550,000 doctors in 9177 regular hospitals in China. If there are no top doctors in a patients’ area, or if a patient needs a professional diagnosis but he/she is too busy to go to a traditional hospital, he/she can register and then log into the website (
www.haodf.com), choosing a type of a disease or finding the doctors he/she prefers. A doctor will diagnose him/her online after the patient pays a fee. Then, the doctor will give the patient a detailed report and provide a prescription for him/her to purchase a prescription drug at a nearby pharmacy. After receiving treatment, patients can also rate the doctor’s services to provide a reference for other patients. If a patient has diabetes, he can find contraindications directly in the diabetes column of the website and can even develop his own diet plan. In this respect, OMWs are more convenient and efficient than traditional hospitals according to patients who have tried them, because they can see a doctor at home, and they do not waste their time in the hospital registration line [
12]. In addition, patients can get a doctor’s prescription from the website and then buy medicine from a pharmacy or online; in this way, the cost is much cheaper than traditional hospitals. Furthermore, patients in rural areas can communicate directly with well-known doctors without leaving home, which greatly alleviates the imbalance of medical resource allocation and contributes to greater Chinese public health. The aforementioned advantages can promote patients’ acceptance of OMWs; however, disadvantages still exist. First, with the method of online diagnosis and treatment, it is difficult to establish a good relationship between patients and doctors, which may affect patients’ trust in the website. Second, OMWs can only solve basic conditions; it is difficult to directly treat complex diseases. Finally, patients may perceive the use of OMWs to be risky, including financial risk, security risk, and time risk. These disadvantages will negatively affect patients’ acceptance of OMWs. Thus, we present a framework for integrating perceived risk (PR) and the technology acceptance model (TAM) to identify the key factors affecting patients’ behavioral intention (BI).
In this research, we want to test how perceived risk, trust, and the relationship between doctors and patients affects patients’ behavioral intentions towards OMWs if they are key influential factors. The cohort of this study is a reasonable size for the application of measures and to gain insights into causality, so it is suitable to apply the TAM framework and expand it to build our research model after reviewing relevant literature. To make our hypothesis more convincing, we conducted a survey and adopted an empirical approach to test our research model and to verify the hypotheses.
The rest of this paper is organized as follows.
Section 2 presents a literature review which offers a short overview of OMWs, TAM, and PR. We present our research hypotheses and model in
Section 3, followed by the explanation of the research methods in
Section 4. The results obtained from our study are clarified in
Section 5.
Section 6 and
Section 7 provide the discussion and conclusions of our study.
2. Literature Review
In this section, we present a literature review to allow readers to understand our problems comprehensively. In the first part, we clarify the origin, definitions, and characteristics of online medical websites, and we review the development process of the technology acceptance model (TAM) and some representative empirical studies that applied the TAM framework as the basis of their research model in part 2. In part 3, we review the definition and studies related to the doctor–patient relationship. We searched the literature (key words: “online medical website*”, “online medical*”, “smart health*”, “technology acceptance model*”, “TAM*”, “consumers’ adoption*”, “doctor–patient relation*”, “physician-patient relation*”) in Science Citation Index Expanded, Social Science Citation Index, and CNKI (the most authoritative database of academic papers in China), and articles were included if they were meaningful, transformative (for example, a literature that has made leaps and bounds in a particular field), and suitable for our theme.
2.1. Online Medical Websites (OMWs)
2.1.1. Online Medical Services and Online Medical Websites
The Internet has become a worldwide infrastructure in people’s lives [
13]. People can access a countless amount of information which can solve their problems easily and quickly from anywhere through a mobile terminal connected to the Internet [
14]. For example, medical institutions and doctors can provide medical services on the Internet for patients to choose from, and patients can use these services to check information about their symptoms, ask doctors to diagnose the condition remotely and issue a prescription, and make an appointment at home ahead of time for registration or surgery schedules. These services are named online medical services.
Many international medical institutions have been experimenting with online medical services for a long time. The University Hospital of Zurich has provided an online medical consultation service since 1999 [
15]. Online medical databases can provide medical and health knowledge for the elderly [
16]. Recently, online medical services have also been extended to the Internet of Things (IoT) and big data [
17,
18,
19]. In China, online medical services have matured, covering many aspects of the medical field. The PDiag scheme, presented by Liu et al. in 2016, which is an efficient and privacy-preserving medical primary diagnosis scheme [
20] and relevant issues about online health communities have been brought to the fore [
21]. Researchers have also considered patients’ feedback on online medical services by studying patients’ comments on online doctors to improve online medical services [
22].
Jiang (2017) classified online medical services into five categories: medical portal websites, continuing medical education websites, medical e-commerce websites, medical communities/interest groups/forums, and online medical websites [
23]. Among them, online medical websites are currently one of the most popular types in China. Their users are both doctors and patients; doctors use OMWs to offer medical advice to patients across the country and to earn fair pay, while patients can obtain services such as online registration, online payment, and medical and health consultations to solve their problems conveniently and quickly and save time and money. In addition, unlike the lack of customer feedback in traditional hospitals, patients on OMWs can freely hire doctors and evaluate them after receiving services, which can be a reference for other patients. This kind of mechanism can increase equality between doctors and patients, and the demand for online medical platforms can be increased by word-of-mouth [
24]. Finally, OMWs can reconfigure medical resources reasonably and provide social support for online patients [
25].
2.1.2. The Characteristics of OMWs
OMWs are one of the most important online medical services, and they have become gradually more authoritative in recent years. Medical undergraduate degree holders can study for medical master programs including Master of Nursing, Master of Clinical Medicine and Master of Basic Medicine from Zhengzhou University through xuetangX (one of Chinese most representative MOOC (Massive Open Online Courses) platforms which was constructed by Tsinghua University,
http://www.xuetangx.com); OMWs, such as Chunyuyisheng and Haodaifu, have officially cooperated with hundreds of third-grade class-A hospitals (top hospitals in China) in China to provide medical services for patients. Therefore, there is no doubt that the most prominent characteristic of OMWs is “online”—it means patients can remotely acquire the medical services they need anytime and anywhere.
However, Internet-based online services always bring various risks (like security risk) to their users [
26]. Rosa (2003) defined risk as a situation or event in which something of human value (including people themselves) is at stake and in which the outcome is uncertain [
27]. The actual risks do not necessarily affect users’ acceptance, because users may not have received the risk information or have received it but have no sense of resistance [
28]. Therefore, we use perceived risk (PR) to describe the risk level that has been received by users that is expected to affect users’ acceptance. Perceived risk is generally considered to include mainly financial risk, performance risk, psychological risk, physical risk, social risk, and time risk [
29,
30]. According to the characteristics of OMWs and the results of a previous pre-test, we considered the main dimensions of PR that may affect patients’ acceptance of OMWs to include perceived privacy risk (PPriR), perceived financial risk (PFR), and perceived physical risk (PPhyR).
OMWs are often considered convenient, efficient [
11], and patient-centered platforms, like a primary care provider [
31]. Therefore, we believe that OMWs are like service providers that focus on meeting the need of patients. During this process, the relationship between doctors and patients may usually be a factor that is important but easily ignored. Furthermore, Christensen et al. (2010) believe that trust in websites largely determines which website is accessed and how information is utilized once a patient has chosen a website [
32]. Therefore, gaining consumers’ trust is crucial for OMWs to gain success. In conclusion, we regard the main characteristics of OMWs as convenience, efficiency, online and risky, patient-centered, and trust-conducted. Finally, three factors (perceived risk, trust, and the doctor–patient relationship) were used as the three basic variables to construct our research model from these characteristics.
2.2. Modified Technology Acceptance Model (TAM)
The technology acceptance model (TAM) which originated from the theory of planned behavior (TPB) and theory of reasoned action (TRA) [
33,
34] is thought of as the primary authoritative model for researching users’ acceptance of a specific technological product [
35,
36]. Davis (1989) figured out that observed variables, which are also named external variables, can affect users’ attitudes (ATT) using through two mediators, perceived usefulness (PU) and perceived ease of use (PEOU), while ATT can affect actual system use indirectly through behavioral intention (BI) to use. Additionally, PEOU can affect PU, and PU can directly affect BI [
37].
With the help of TAM, researchers can choose external variables that fit their research content to study users’ acceptance of a specified product. Hence, researchers have proposed many modified TAMs based on Davis’ TAM. Venkatesh and Davis (2000) presented TAM2 to enhance the explanation of TAM; they integrated social influence processes (subjective norm and image) and cognitive instrumental processes (job relevance, output quality, result demonstrability) as external variables and added experience and voluntariness as moderators to expand TAM [
38]. After that, on the basis of summarizing the research on TAM over the years, Venkatesh et al. (2003) integrated TAM, task-technology fit, innovation diffusion theory, a motivational model, a model of PC utilization, and social cognitive theory to form the unified theory of acceptance and use of technology. They added performance expectancy, effort expectancy, social influences, and facilitating conditions as external variables, and gender, age, experience, and voluntariness of use were used as moderators [
39]. However, the theory framework of the previous model is too complicated to explain users’ acceptance of different products in different cultural environments. Therefore, when studying patients’ acceptance of medical services, many researchers adopted TAM as a basic model and then added appropriate external variables, mediators, and moderators to form modified TAMs [
40,
41,
42,
43,
44,
45].
2.3. Doctor–Patient Relationship (DPR)
The doctor–patient relationship (DPR) is defined as “the extent of familiarity, trust, and interaction between doctors and patients in the context of healthcare planning” [
35]. In China, issues related to the DPR have become a common topic that has been widely discussed due to the generally bad relationships between doctors and patients [
46]. The main reasons affecting DPR in China include unbalanced allocation of medical resources, rising medical expenses, low level of medical services, and poor communication between doctors and patients [
47]. Therefore, it is important to include DPR in the research framework when studying Chinese medical services.
A good DPR should be built if the medical quality is to be improved continuously [
48,
49]. Many studies have shown that the DPR affects users’ (doctors’ or patients’) intentions to adopt specified medical technology in some ways; this especially occurred after the Internet became a ubiquitous phenomenon in the DPR [
50]. Abdekhoda (2015) studied physicians’ acceptance of electronic medical records and stated that DPR will directly and significantly affect physicians’ attitude to use OMWs [
51]. Dou (2017) proposed that DPR will affect patients’ acceptance of smartphone health technology through affecting PEOU [
52]. Nowadays, DPR is considered an important factor that affects patients’ acceptance of e-health systems [
53]. However, the current body of literature has hardly considered that the DPR may play the role of moderator rather than an observed variable that directly affects intention to use OMWs during the process of patients’ accepting medical services. Considering that the strength of DPR may change patients’ psychological conditions so that the influences of observed variables on latent variables might change, we tried to consider DPR as a moderator in this paper.
4. Method
In this study, we adopted a survey approach to examine the hypotheses presented in the previous section because we needed to get original data from the target users of OMWs to certify whether our hypotheses could be supported by statistics or not. As online medical services are a kind of service formed by combining medical services and emerging Internet technology (IT), which was the basis for the birth and development of this industry, the research on patients’ acceptance of online medical services can be assessed with the technology acceptance model (TAM) [
33]. In addition, as TAM alone cannot include all the features of a new product, researchers usually use TAM as a research framework [
71,
81,
82,
83]. Therefore, this study combined the TAM and the characteristics of OMWs to establish the research model and develop the questionnaire. The structural equation model (SEM) allows several endogenous variables to be considered at the same time as well as the existence of the measuring errors and residuals between exogenous variables and endogenous variables [
84]. Moreover, the SEM allows researchers to clearly map out the relationship between multiple latent variables [
85]. After comparison and analysis, we concluded that using the SEM to test our data was the most suitable method for this research [
86]. Therefore, the SEM was employed to test the research model formulated in the previous sections. In addition, in order to improve the questionnaire, this study carried out a pre-test of 30 interviewees before the formal survey [
87].
4.1. Questionnaire Development
We adopted a questionnaire with two sections to test our theoretical model [
88]. Part 1 had 31 questions that were used to examine the constructs, and Part 2 was a personal information card that was used to gather some basic information about the interviewees. We presented a statement on each questionnaire to inform that there were no right/wrong or good/bad answers in the questionnaire and that all collected data were confidential and for academic use only.
Based on the characteristics of OMWs, the research model consisted of 7 constructs. Among them, perceived risk is composed of perceived privacy risk, perceived financial risk, and perceived safety risk, including 9 factors in total, and each factor was assessed by 2 to 5 items. In order to improve the content validity, most of the items were derived from the current literature [
89]. To ensure that the meaning of the items could be understood clearly by researchers and interviewees, after the first researcher had translated the original items (English/Chinese), another researcher independently translated them into English/Chinese and then compared it with the original, until our questionnaire had the same meaning as the original and could accurately convey the characteristics of the OMWs. Finally, we completed a pre-test with 30 interviewees and modified part of the questionnaire content according to their feedback to form the final questionnaire.
The final version of the questionnaire had 34 items. There were 31 items in Part 1, covering 7 factors: PU, PEOU, ATT, BI, TRU, PR and DPR. Part 2 consisted of 3 items, including several basic characteristics of research participants like gender, age, and education. The factors and their items are shown in
Appendix A. Each item in Part 1 corresponding to the constructs was measured using a 7-point Likert scale, where “1 means strongly disagree” and “7 means strongly agree”. Items for PU and PEOU were adapted from those of Venkatesh and Davis (2000) [
38]; items for ATT and BI were adapted from Venkatesh et al. (2003) [
39]; and items for DPR, TRU, PPriR, PFR, and PPhyR were adapted from those of Chung-Feng Liu et al. (2013) [
35], Lee (2005) [
90], Hajli and Lin (2016) [
91], and Featherman and Pavlou (2003) [
92], respectively. It should be noted that since PR contains three dimensions (PPriR, PFR, and PPhyR), each with 2–4 items, we calculated the average value of multiple items of each dimension as the value of that dimension during the process of data analysis. For example, PR had three items (PPriR, PFR, and PPhyR) and among them, PFR had two items (PFR1 and PFR2), so we calculated the average value of PFR1 and PFR2 as the value of PFR.
4.2. Data Collection
Our questionnaires were completed by adults (≥18 years old) who had experience with using online medical websites to ensure that interviewees could understand the content of the questionnaires accurately. To ensure that the survey was widely distributed, we collected data online and offline at the same time. We sent the questionnaire to Wenjuanxing (
www.wenjuanxing.com), which is one of most widely used online questionnaire collection platforms in China, and then we distributed it through Wechat, which is one of the most popular social networks in China. The online questionnaires were openly available to any users of these services, but only users who met our requirements could fill out the questionnaires. As a result, we collected 132 responses online in total. Meanwhile, we collected data offline. Constrained by the resources of researchers, several cities (including Chengdu, Zigong, Xi’an, Weihai, Tsingtao, and Leshan) that were accessible to researchers were selected at first. Then, we selected 2 hospitals from each city by a random sampling method. Lastly, we looked for research participants in the waiting rooms of each hospital to fill in the questionnaires, and these were handed out by researchers personally. Since surgical and radiological services are not available on OMWs, all the respondents were from clinical departments. Anyway, we collected 136 copies offline. We also discussed the ethical concerns surrounding the inclusion of research participants in the research and the universal principles of informed consent. The participants had to satisfy the following criteria: (1) aged above or equal to 18 years; (2) agreed to be included in this research and filled out the questionnaire voluntarily; (3) participants were anonymous in order to protect their privacy; (4) participants were aware that there were no right/wrong or good/bad answers in this questionnaire and that all collected data were confidential and for academic use only; and (5) participants had to have experience with using online medical websites. And the authors confirm that this research has been carried out in accordance with Chinese ethical research rules.
We collected data from April to December in 2018; overall, 268 copies were returned. After excluding 23 responses that had duplicate IPs (internet protocols) or too many missing values, we had 245 valid responses in total. We collected the IPs of the respondents and only used them to eliminate the repeated questionnaires from duplicate IPs to ensure that each questionnaire was filled out by a different respondent. After doing this, the IP data were deleted from our database. The demographics of respondents are summarized in
Table 1.
6. Discussion
The aim of this research was to investigate how perceived risk affects patient’s behavioral intention to use online medical websites using trust and the moderating effect of the doctor–patient relationship as variables. We conducted a structural equation analysis to solve the first question and a regression analysis for the second one. We presented eight hypotheses, and six of them were supported by the analysis.
As an authoritative research framework in the field of individual choice, the technology acceptance model was adopted as a basic framework and was an important part of our research model. The structural equation analysis results revealed that apart from
H2a (PU is positively related to patients’ ATT), all hypotheses in this framework were supported, which indicates that although almost 30 years have passed since its development, Davis’s (1989) TAM framework is still suitable for assessing patients’ choice of medical services [
33]. Therefore, we suggest that researchers should consider TAM as an important reference if they want to explore the key factors affecting patients’ intention to choose a specific medical product or service. Furthermore, since PU did not show a significant effect on ATT but affected BI directly, we consider that consumers’ decision-making processes have been simplified as consumers have become used to online purchasing. The usefulness of a product may motivate consumers to form a behavioral intention directly. Therefore, ATT can be omitted when researchers use the framework of TAM in the future, as in the work of Chow et al. (2012) [
68,
69,
70].
In particular, ATT (β = 0.391,
p < 0.01) and PU (β = 0.491,
p < 0.01) are two important factors that can positively influence patients’ BI directly. Additionally, PEOU has a strong positive effect on PU (β = 0.940,
p < 0.01) and ATT (β = 0.847,
p < 0.1). Although these paths have been certified several times [
65,
68,
69], some researchers have reported opposite results [
61,
70]. Additionally, PU did not show a significant influence on ATT, which is different from the results of Davis and Venkatesh (1996) [
34]. We believe that the research models of different products are customized for specific products when researchers study individual choice. Therefore, although TAM provides a general explanation for individual choice in the field of consumer adoption, the results generated by the different models still show differences. This is a reason why this paper designed a modified TAM based on the community characteristics of OMW users in China to explore the key factors influencing patient use of OMWs. According to the discussion, our suggestion is that it is very important for medical service providers to ensure patients find OMWs useful and easy to use. To do that, they need to transform the marketing strategy from “educated by consumers” to “educating consumers”. Under the current situation, it is difficult for new consumers to use OMWs with no problems, especially those who cannot use the Internet skillfully. Therefore, the most visible place on the OMWs should be the operations guide video, and many success cases should be displayed in order to prompt consumers to believe that OMWs are useful and convenient for them.
In contrast to our expectations, TRU was not shown to have a significant effect on PU, but TRU is still an important factor in the whole influence process as it can affect PU, ATT, and BI indirectly through PEOU (β = 0.798,
p < 0.01). Therefore, it is crucial for medical service providers to retain the trust of consumers in their products. Although many mainstream providers have increased their quality of services, they are not simply trusted enough by many consumers due to worries about security of money and personal information [
105]. In other words, patients’ trust in OMWs will decrease if they perceive that financial risk, physical risk, or privacy risk is present. Not surprisingly, our data certified that patients’ PR is negatively related to their trust in OMWs (β = −0.552,
p < 0.01). Therefore, patients’ PR should be inhibited during the process of using OMWs. We have several suggestions for medical service providers. Firstly, they should allow patients to use modes of payment that are widely trusted by consumers, like Zhifubao and Wechat (The most widely used online wallet in China), to reduce their perceived financial risk. Secondly, doctors’ licenses should be shown to patients before they decide to accept a diagnosis online, and they should be informed that the health insurance will pay if they are misdiagnosed. In this way, patients’ perceived physical risk will be decreased, indirectly increasing their intention to use OMWs. Thirdly, in order to reduce patients’ perceived privacy risk, patients should be allowed to use pseudonyms unless they need to buy prescription drugs online. Finally, our data certified that the doctor–patient relationship is a significant moderator that influences the effect of PR on TRU. Additionally, PR’s negative effect will be strengthened if the DPR is at a low level, while this kind of negative influence can be weakened if there is a good relationship between patients and doctors. Therefore, we suggest that the OMWs should provide a thorough responsive feedback mechanism. Doctors can be sued if they do not show a good attitude when communicating with patients, and complaints should be published by the platform if they are found to be valid. Anyway, medical service providers should do their best to make patients feel that they can build a good (or at least equal) relationship with doctors.
This study also has several limitations. First, the independent variable perceived risk had only three aspects (perceived financial risk, perceived physical risk, and perceived privacy risk) in this research; however, research participants may perceive another type of risk which has not been identified during the use of OWMs. However, it is difficult to conduct longitudinal research to trace the subsequent feelings of our respondents, although we may explore more detailed findings if we can collect more samples. Lastly, researchers should pay attention to the fact that it is conceivable that responses from online participants could differ from offline participants due to effects of the mode of administration. In other words, there may be bias between the data collected online and the data collected offline [
106]. A future field experiment may to help eliminate this kind of bias and make the results of the empirical analysis more rigorous. Future research should involve (1) subsequent analysis to determine the key factors affecting patients’ continued behavioral intention towards OMWs, (2) a meta-analysis to prove that the moderating effect of DPR is widespread, and (3) an exploration of the reasons why DPR plays a moderating role (the culture, for example) in the influence process.
7. Conclusions
In this research, we constructed a modified TAM based on the characteristics of OMWs and the TAM framework to examine how PR affects BI through TRU, PEOU, PU, and ATT. We also examined the moderating effect of DPR. The results of the data analysis reveal that PR is negatively related to TRU. TRU has a positive effect on PEOU but has no significant effect on PU. PEOU has positive effects on both PU and ATT. PU is positively related to BI but has no significant effect on ATT. ATT is also positively related to BI. Finally, DPR can significantly moderate PR’s effect on TRU. In general, patients’ PR can negatively affect their BI through their TRU, PEOU, PU, and ATT, while DPR can moderate the negative influence of PR on TRU.
Based on the results of the data analysis, we suggest that it is important for OMW providers to improve patients’ trust and perceived risk in order to increase their behavioral intention, and we give some detailed methods for further innovation in the discussion section. Additionally, the vitality of OMW providers will be promoted as the consumers’ behavioral intentions improve. Finally, we acknowledge that there is still room for improvement in this study. We may modify the survey or develop a new one to fit the habits of Chinese consumers. Future research will include another empirical study including more samples and more key influence factors to explain users’ adoption of OMWs more effectively.
From a theoretical perspective, the current literature cannot reveal the moderation mechanism of the doctor–patient relationship that has been shown by this research. Therefore, we provide a valuable reference for future research in the field of individual choice. From a practical perspective, our research indicates that five key factors affect patients’ adoption of OMWs. Additionally, we have provided several meaningful suggestions for medical service providers to attract more users and maintain their existing users. We believe that OMWs could provide better services for patients with poor medical conditions, especially in rural areas, and promote the rational allocation of medical resources and medical equity.