Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chao, H.R.; Wang, S.L.; Lin, T.C.; Chung, X.H. Levels of organochlorine pesticides in human milk from central Taiwan. Chemosphere 2006, 62, 1774–1785. [Google Scholar] [CrossRef]
- Tsai, W.T. Current status and regulatory aspects of pesticides considered to be persistent organic pollutants (POPs) in Taiwan. Int. J. Environ. Res. Public Health 2010, 7, 3615–3627. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Fito, N.; Cardo, E.; Sala, M.; Eulalia de Muga, M.; Mazon, C.; Verdu, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, Exposure to Organochlorine Compounds, and Neurodevelopment in Infants. Pediatrics 2003, 111, e580–e585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for DDT, DDE, and DDD; 2002. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf (accessed on 26 December 2018).
- Longnecker, M.P.; Klebanoff, M.A.; Zhou, H.; Brock, J.W. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet 2001, 358, 110–114. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Chang, G.R. Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. Environ. Sci. Pollut. Res. Int. 2018, 25, 7699–7708. [Google Scholar] [CrossRef] [PubMed]
- Okoya, A.A.; Ogunfowokan, A.O.; Asubiojo, O.I.; Torto, N. Organochlorine Pesticide Residues in Sediments and Waters from Cocoa Producing Areas of Ondo State, Southwestern Nigeria. ISRN Soil Sci. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mrema, E.J.; Rubino, F.M.; Brambilla, G.; Moretto, A.; Tsatsakis, A.M.; Colosio, C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 2013, 307, 74–88. [Google Scholar] [CrossRef]
- Saeedi Saravi, S.S.; Dehpour, A.R. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016, 145, 255–264. [Google Scholar] [CrossRef]
- Chen, M.-W.; Santos, H.; Que, D.; Gou, Y.-Y.; Tayo, L.; Hsu, Y.-C.; Chen, Y.-B.; Chen, F.-A.; Chao, H.-R.; Huang, K.-L. Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population. Int. J. Environ. Res. Public Health 2018, 15, 931. [Google Scholar] [CrossRef]
- Gladen, B.C.; Ragan, N.B.; Rogan, W.J. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J. Pediatr. 2000, 136, 490–496. [Google Scholar] [CrossRef]
- Karmaus, W.; Asakevich, S.; Indurkhya, A.; Witten, J.; Kruse, H. Childhood growth and exposure to dichlorodiphenyl dichloroethene and polychlorinated biphenyls. J. Pediatr. 2002, 140, 33–39. [Google Scholar] [CrossRef]
- Gerhard, I.; Monga, B.; Krahe, J.; Runnebaum, B. Chlorinated hydrocarbons in infertile women. Environ. Res. 1999, 80, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.H.B.; Polder, A.; Brynildsrud, O.B.; Karimi, M.; Lie, E.; Manyilizu, W.B.; Mdegela, R.H.; Mokiti, F.; Murtadha, M.; Nonga, H.E.; et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania. Environ. Res. 2017, 154, 425–434. [Google Scholar] [CrossRef]
- Boucher, O.; Simard, M.N.; Muckle, G.; Rouget, F.; Kadhel, P.; Bataille, H.; Chajes, V.; Dallaire, R.; Monfort, C.; Thome, J.P.; et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology 2013, 35, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Pan, I.J.; Daniels, J.L.; Goldman, B.D.; Herring, A.H.; Siega-Riz, A.M.; Rogan, W.J. Lactational exposure to polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene and infant neurodevelopment: An analysis of the pregnancy, infection, and nutrition babies study. Environ. Health Perspect. 2009, 117, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Altshul, L.; Hauser, R. Serum PCBs, p,p′-DDE and HCB predict thyroid hormone levels in men. Environ. Res. 2007, 104, 296–304. [Google Scholar] [CrossRef]
- Freire, C.; Koifman, R.J.; Sarcinelli, P.; Rosa, A.C.; Clapauch, R.; Koifman, S. Long term exposure to organochlorine pesticides and thyroid function in children from Cidade dos Meninos, Rio de Janeiro, Brazil. Environ. Res. 2012, 117, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Pedrerol, M.; Ribas-Fito, N.; Torrent, M.; Carrizo, D.; Grimalt, J.O.; Sunyer, J. Effects of PCBs, p,p′-DDT, p,p′-DDE, HCB and beta-HCH on thyroid function in preschool children. Occup. Environ. Med. 2008, 65, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, J.; Kim, H.J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; Kim, S.Y.; Moon, H.B.; Kim, S.; et al. Association between several persistent organic pollutants and thyroid hormone levels in serum among the pregnant women of Korea. Environ. Int. 2013, 59, 442–448. [Google Scholar] [CrossRef]
- Dufour, P.; Pirard, C.; Seghaye, M.C.; Charlier, C. Association between organohalogenated pollutants in cord blood and thyroid function in newborns and mothers from Belgian population. Environ. Pollut. 2018, 238, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Pu, Y.; Tian, H.; Wu, W.; Sun, X.; Zhou, T.; Tao, Y.; Yuan, J.; Shen, X.; Feng, Y.; et al. Association of in utero exposure to organochlorine pesticides with thyroid hormone levels in cord blood of newborns. Environ. Pollut. 2017, 231, 78–86. [Google Scholar] [CrossRef]
- Darnerud, P.O.; Lignell, S.; Glynn, A.; Aune, M.; Tornkvist, A.; Stridsberg, M. POP levels in breast milk and maternal serum and thyroid hormone levels in mother-child pairs from Uppsala, Sweden. Environ. Int. 2010, 36, 180–187. [Google Scholar] [CrossRef]
- Jaraczewska, K.; Lulek, J.; Covaci, A.; Voorspoels, S.; Kaluba-Skotarczak, A.; Drews, K.; Schepens, P. Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Sci. Total Environ. 2006, 372, 20–31. [Google Scholar] [CrossRef]
- Müller, M.H.B.; Polder, A.; Brynildsrud, O.B.; Grønnestad, R.; Karimi, M.; Lie, E.; Manyilizu, W.B.; Mdegela, R.H.; Mokiti, F.; Murtadha, M.; et al. Prenatal exposure to persistent organic pollutants in Northern Tanzania and their distribution between breast milk, maternal blood, placenta and cord blood. Environ. Res. 2019, 170, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Tang-Peronard, J.L.; Heitmann, B.L.; Andersen, H.R.; Steuerwald, U.; Grandjean, P.; Weihe, P.; Jensen, T.K. Association between prenatal polychlorinated biphenyl exposure and obesity development at ages 5 and 7 y: A prospective cohort study of 656 children from the Faroe Islands. Am. J. Clin. Nutr. 2014, 99, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Tsang, H.L.; Wu, S.; Leung, C.K.; Tao, S.; Wong, M.H. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum. Environ. Int. 2011, 37, 142–151. [Google Scholar] [CrossRef]
- Chao, H.R.; Tsou, T.C.; Huang, H.L.; Chang-Chien, G.P. Levels of breast milk PBDEs from southern Taiwan and their potential impact on neurodevelopment. Pediatr. Res. 2011, 70, 596–600. [Google Scholar] [CrossRef]
- Shy, C.G.; Huang, H.L.; Chao, H.R.; Chang-Chien, G.P. Cord blood levels of thyroid hormones and IGF-1 weakly correlate with breast milk levels of PBDEs in Taiwan. Int. J. Hyg. Environ. Health 2012, 215, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.R.; Erickson, S.J.; Schrader, R.; Duncan, A.F. Comparison of the Bayley II Mental Developmental Index and the Bayley III Cognitive Scale: Are we measuring the same thing? Acta Paediatr. 2012, 101, e55–e58. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-M.; Chen, F.-A.; Huang, Y.-F.; Hsing, L.-L.; Chen, L.-L.; Wu, L.-S.; Liu, T.-S.; Chang-Chien, G.-P.; Chen, K.-C.; Chao, H.-R. Negative associations between PBDE levels and thyroid hormones in cord blood. Int. J. Hyg. Environ. Health 2011, 214, 115–120. [Google Scholar] [CrossRef]
- Brown, A.S.; Cheslack-Postava, K.; Rantakokko, P.; Kiviranta, H.; Hinkka-Yli-Salomäki, S.; McKeague, I.W.; Surcel, H.-M.; Sourander, A. Association of Maternal Insecticide Levels With Autism in Offspring From a National Birth Cohort. Am. J. Psychiatry 2018, 175, 1094–1101. [Google Scholar] [CrossRef]
- Cohn, B.A.; Cirillo, P.M.; La Merrill, M.A. Correlation of body mass index with serum DDTs predicts lower risk of breast cancer before the age of 50: Prospective evidence in the Child Health and Development Studies. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 302–309. [Google Scholar] [CrossRef]
- Montgomery, K.S. Apgar Scores: Examining the Long-term Significance. J. Perinat. Educ. 2000, 9, 5–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, L.G.; Oakland, T.; Aylward, G.P. Bayley-III Clinical Use and Interpretation; Academic Press: London, UK, 2010; p. 256. [Google Scholar]
- Rogan, W.J.; Chen, A. Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 2005, 366, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Fenster, L.; Eskenazi, B.; Anderson, M.; Bradman, A.; Hubbard, A.; Barr, D.B. In utero exposure to DDT and performance on the Brazelton neonatal behavioral assessment scale. Neurotoxicology 2007, 28, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Marks, A.R.; Bradman, A.; Fenster, L.; Johnson, C.; Barr, D.B.; Jewell, N.P. In Utero Exposure to Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) and Neurodevelopment Among Young Mexican American Children. Pediatrics 2006, 118, 233–241. [Google Scholar] [CrossRef]
- Ribas-Fitó, N.; Torrent, M.; Carrizo, D.; Muñoz-Ortiz, L.; Júlvez, J.; Grimalt, J.O.; Sunyer, J. In utero exposure to background concentrations of DDT and cognitive functioning among preschoolers. Am. J. Epidemiol. 2006, 164, 955–962. [Google Scholar] [CrossRef]
- Shen, H.; Main, K.M.; Kaleva, M.; Virtanen, H.; Haavisto, A.M.; Skakkebaek, N.E.; Toppari, J.; Schramm, K.W. Prenatal organochlorine pesticides in placentas from Finland: Exposure of male infants born during 1997–2001. Placenta 2005, 26, 512–514. [Google Scholar] [CrossRef]
- Cheslack-Postava, K.; Rantakokko, P.V.; Hinkka-Yli-Salomaki, S.; Surcel, H.M.; McKeague, I.W.; Kiviranta, H.A.; Sourander, A.; Brown, A.S. Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: A pilot study. Neurotoxicol. Teratol. 2013, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.M.; English, P.B.; Grether, J.K.; Windham, G.C.; Somberg, L.; Wolff, C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ. Health Perspect. 2007, 115, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Maervoet, J.; Vermeir, G.; Covaci, A.; Van Larebeke, N.; Koppen, G.; Schoeters, G.; Nelen, V.; Baeyens, W.; Schepens, P.; Viaene, M.K. Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates. Environ. Health Perspect. 2007, 115, 1780–1786. [Google Scholar] [CrossRef]
- Rathore, M.; Bhatnagar, P.; Mathur, D.; Saxena, G.N. Burden of organochlorine pesticides in blood and its effect on thyroid hormones in women. Sci. Total Environ. 2002, 295, 207–215. [Google Scholar] [CrossRef]
- Chevrier, J.; Eskenazi, B.; Holland, N.; Bradman, A.; Barr, D.B. Effects of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy. Am. J. Epidemiol. 2008, 168, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Takser, L.; Mergler, D.; Baldwin, M.; de Grosbois, S.; Smargiassi, A.; Lafond, J. Thyroid Hormones in Pregnancy in Relation to Environmental Exposure to Organochlorine Compounds and Mercury. Environ. Health Perspect. 2005, 113, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, C.; Lopez-Espinosa, M.J.; Fernandez, M.; Molina-Molina, J.M.; Prada, R.; Olea, N. Prenatal exposure to organochlorine pesticides and TSH status in newborns from Southern Spain. Sci. Total Environ. 2011, 409, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, J.; Kohno, H.; Kunisue, T.; Kataoka, K.; Shimomura, H.; Tanabe, S.; Konishi, S. Concentrations of organochlorine pollutants in mothers who gave birth to neonates with congenital hypothyroidism. Chemosphere 2007, 68, 972–976. [Google Scholar] [CrossRef]
- Ribas-Fitó, N.; Sala, M.; Cardo, E.; Mazón, C.; de Muga, M.E.; Verdú, A.; Marco, E.; Grimalt, J.O.; Sunyer, J. Organochlorine compounds and concentrations of thyroid stimulating hormone in newborns. Occup. Environ. Med. 2003, 60, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Hoppin, J.A.; Kamel, F.; Levan, T.D. Pesticide use and thyroid disease among women in the Agricultural Health Study. Am. J. Epidemiol. 2010, 171, 455–464. [Google Scholar] [CrossRef]
- Boada, L.D.; Lara, P.C.; Alvarez-Leon, E.E.; Losada, A.; Zumbado, M.L.; Liminana-Canal, J.M.; Apolinario, R.; Serra-Majem, L.; Luzardo, O.P. Serum levels of insulin-like growth factor-I in relation to organochlorine pesticides exposure. Growth Horm. IGF Res. 2007, 17, 506–511. [Google Scholar] [CrossRef]
- Bernal, J. Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Rovet, J.; Chen, Z.; Koibuchi, N. Developmental thyroid hormone disruption: Prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 2012, 33, 842–852. [Google Scholar] [CrossRef]
- Shelton, J.F.; Hertz-Picciotto, I.; Pessah, I.N. Tipping the balance of autism risk: Potential mechanisms linking pesticides and autism. Environ. Health Perspect. 2012, 120, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheng, Y.; Tang, Q.; Lin, S.; Li, Y.; Hu, X.; Nian, J.; Gu, H.; Lu, Y.; Tang, H.; et al. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China. Environ. Res. 2014, 129, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Araki, A.; Nakajima, S.; Miyashita, C.; Ikeno, T.; Itoh, S.; Minatoya, M.; Kobayashi, S.; Mizutani, F.; Chisaki, Y.; et al. Association between prenatal exposure to organochlorine pesticides and the mental and psychomotor development of infants at ages 6 and 18 months: The Hokkaido Study on Environment and Children’s Health. Neurotoxicology 2017, 69, 201–208. [Google Scholar] [CrossRef]
- Zumbado, M.; Luzardo, O.P.; Lara, P.C.; Alvarez-Leon, E.E.; Losada, A.; Apolinario, R.; Serra-Majem, L.; Boada, L.D. Insulin-like growth factor-I (IGF-I) serum concentrations in healthy children and adolescents: Relationship to level of contamination by DDT-derivative pesticides. Growth. Horm. IGF Res. 2010, 20, 63–67. [Google Scholar] [CrossRef]
- Cools, R.; Nakamura, K.; Daw, N.D. Serotonin and dopamine: Unifying affective, activational, and decision functions. Neuropsychopharmacology 2011, 36, 98–113. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Heptachlor and Heptachlor Epoxide; 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp12.pdf (accessed on 26 December 2018).
- Richardson, J.R.; Caudle, W.M.; Wang, M.Z.; Dean, E.D.; Pennell, K.D.; Miller, G.W. Developmental heptachlor exposure increases susceptibility of dopamine neurons to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)in a gender-specific manner. Neurotoxicology 2008, 29, 855–863. [Google Scholar] [CrossRef]
- Beseler, C.L.; Stallones, L.; Hoppin, J.A.; Alavanja, M.C.R.; Blair, A.; Keefe, T.; Kamel, F. Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. Environ. Health Perspect. 2008, 116, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Debes, F.; Weihe, P.; Choi, A.L.; Grandjean, P. Thyroid dysfunction as a mediator of organochlorine neurotoxicity in preschool children. Environ. Health Perspect. 2011, 119, 1429–1435. [Google Scholar] [CrossRef]
Variables | Mean ± SD | Median | Range |
---|---|---|---|
Mothers | |||
Age (years) | 29.5 ± 4.64 | 31.0 | 17.0–40.0 |
Prepregnant BMI (kg/m2) | 22.5 ± 4.12 | 21.7 | 15.4–34.9 |
Parity (number) | 1.91 ± 0.784 | 2.00 | 1.00–4.00 |
Length of residence in the Kaoping area (years) | 22.2 ± 11.6 | 27.0 | 1.00–40.0 |
Newborns | |||
Demography | |||
Gestational age (week) | 38.2 ± 1.47 | 38.0 | 32.0–40.0 |
Weight (kg) | 3.09 ± 0.379 | 3.01 | 2.30–4.00 |
Length (cm) | 49.1 ± 1.63 | 49.0 | 46.0–52.0 |
Head circumference (cm) | 33.5 ± 1.19 | 33.0 | 30.5–36.0 |
Chest circumference (cm) | 32.3 ± 1.41 | 32.0 | 29.5–35.0 |
Hormones in cord blood | |||
Cord blood T3 (ng/mL) | 0.385 ± 0.0973 | 0.390 | 0.250–0.600 |
Cord blood T4 (μg/dL) | 8.74 ± 1.56 | 8.83 | 5.22–12.5 |
Cord blood TSH (μIUg/mL) | 4.85 ± 2.34 | 4.14 | 1.83–11.6 |
Cord blood FT3 (pg/mL) | 1.38 ± 0.191 | 1.40 | 1.00–1.69 |
Cord blood FT4 (ng/dL) | 1.11 ± 0.120 | 1.13 | 0.840–1.48 |
Cord blood IGF-1 (ng/mL) | 58.8 ± 28.1 | 52.3 | 11.4–118 |
Neurodevelopment | |||
Newborns | |||
Apgar score at 1 min (score) | 8.66 ± 0.601 | 9.00 | 6.00–10.0 |
Apgar score at 5 min (score) | 9.02 ± 0.212 | 9.00 | 7.00–10.0 |
Infants (Bayley-III) | |||
Cognitive scale (score) | 101 ± 10.3 | 100 | 85.0–125 |
Language scale (score) | 100 ± 10.2 | 100 | 77.0–125 |
Motor scale (score) | 97.9 ± 8.65 | 97.0 | 79.0–121 |
Social-emotional scale (score) | 98.5 ± 18.2 | 100 | 55.0–140 |
Adaptive behavior scale (score) | 98.6 ± 14.3 | 100 | 62.0–131 |
Age at the time of testing (month) | 11.1 ± 1.01 | 11.0 | 8.00–12.0 |
OCPs | Mean ± SD a | Median | Range | N > LODs b |
---|---|---|---|---|
HCHs c | ||||
α-HCH | 0.236 ± 0.310 | 0.126 | <LOD–1.64 | 50.0 |
β-HCH | 0.208 ± 0.241 | 0.117 | <LOD–1.31 | 50.0 |
γ-HCH | 0.128 ± 0.113 | 0.0922 | 0.600–0.110 | 48.0 |
δ-HCH | 0.148 ± 0.122 | 0.108 | <LOD–0.470 | 45.0 |
CHLs d | ||||
cis-CHL | 0.113 ± 0.129 | 0.0765 | <LOD–0.730 | 43.0 |
trans-CHL | 0.131 ± 0.268 | 0.0669 | <LOD–1.90 | 28.0 |
DDTs e | ||||
4,4′-DDD | 1.00 ± 1.43 | 0.211 | <LOD–5.56 | 31.0 |
4,4′-DDE | 10.3 ± 6.76 | 9.84 | 0.350–44.6 | 55.0 |
4,4′-DDT | 0.715 ± 0.745 | 0.391 | <LOD–2.87 | 47.0 |
ΣEndosulfan f | ||||
Endosulfan I | 0.194 ± 0.353 | 0.0905 | <LOD–2.20 | 36.0 |
Endosulfan II | 0.151 ± 0.367 | 0.0161 | <LOD–2.51 | 25.0 |
Endosulfan sulfate | 0.147 ± 0.179 | 0.0812 | <LOD–0.740 | 47.0 |
ΣEndrin g | ||||
Endrin | 0.313 ± 0.208 | 0.168 | <LOD–3.04 | 51.0 |
Endrin ketone | 0.112 ± 0.146 | 0.0194 | <LOD–0.670 | 29.0 |
Endrin aldehyde | 0.152 ± 0.265 | 0.0564 | <LOD–1.56 | 38.0 |
ΣHeptachlor h | ||||
Heptachlor | 0.660 ± 0.685 | 0.385 | 0.040–3.48 | 55.0 |
Heptachlor epoxide | 0.365 ± 0.388 | 0.226 | <LOD–1.53 | 52.0 |
Aldrin | 0.366 ± 0.474 | 0.169 | 0.0100–2.32 | 51.0 |
Dieldrin | 0.352 ± 0.422 | 0.172 | 0.0100–1.90 | 53.0 |
Methoxychlor | 0.106 ± 0.149 | 0.0123 | <LOD–0.620 | 26.0 |
OCPs | Cognitive Scale | Language Scale | Social-Emotional Scale | ||||||
---|---|---|---|---|---|---|---|---|---|
≤median (n = 35) | >median (n = 20) | p | ≤89 (n = 8) | >89 (n = 47) | p | ≤89 (n = 17) | >89 (n = 38) | p | |
δ-HCH | 0.124 ± 0.115 | 0.189 ± 0.125 | 0.025 * | 0.213 ± 0.181 | 0.137 ± 0.107 | 0.417 | 0.129 ± 0.115 | 0.157 ± 0.125 | 0.465 |
trans-CHL | 0.108 ± 0.108 | 0.173 ± 0.425 | 0.280 | 0.0456 ± 0.0353 | 0.146 ± 0.287 | 0.294 | 0.241 ± 0.445 | 0.0824 ± 0.105 | 0.048 * |
4,4′-DDD | 0.759 ± 1.07 | 1.43 ± 1.86 | 0.176 | 0.386 ± 1.05 | 1.11 ± 1.46 | 0.031 * | 1.37 ± 1.56 | 1.35 ± 0.219 | 0.250 |
4,4′-DDT | 0.856 ± 0.839 | 0.502 ± 0.495 | 0.298 | 1.49 ± 1.13 | 0.582 ± 0.578 | 0.015 * | 0.733 ± 0.836 | 0.706 ± 0.713 | 0.898 |
Dieldrin | 0.314 ± 0.362 | 0.418 ± 0.514 | 0.582 | 0.114 ± 0.0814 | 0.392 ± 0.444 | 0.042 * | 0.274 ± 0.274 | 0.386 ± 0.473 | 0.792 |
Endosulfan I | 0.129 ± 0.183 | 0.308 ± 0.522 | 0.411 | 0.0425 ± 0.0346 | 0.220 ± 0.376 | 0.019 * | 0.222 ± 0.515 | 0.182 ± 0.258 | 0.852 |
Endrin ketone | 0.0986 ± 0.128 | 0.133 ± 0.174 | 0.394 | 0.0298 ± 0.0295 | 0.125 ± 0.154 | 0.036 * | 0.120 ± 0.188 | 0.107 ± 0.126 | 0.466 |
OCPs | Levels (ng/g Lipid) | T3 (ng/mL) | T4 (µg/dL) | TSH (µgU/mL) | FT3 (pg/mL) | FT4 (ng/dL) | IGF-1 (ng/mL) |
---|---|---|---|---|---|---|---|
α-HCH | ≤0.269 (n = 40) | 0.407 ± 0.0962 | 9.05 ± 1.67 | 5.34 ± 2.35 | 1.43 ± 0.185 | 1.12 ± 0.126 | 60.9 ± 26.6 |
>0.269 (n = 15) | 0.320 ± 0.0666 | 8.15 ± 1.31 | 3.78 ± 2.03 | 1.28 ± 0.175 | 1.09 ± 0.111 | 53.4 ± 32.3 | |
p value | 0.010 * | 0.153 | 0.004 ** | 0.018 * | 0.612 | 0.328 | |
β-HCH | ≤0.260 (n = 40) | 0.400 ± 0.0959 | 8.93 ± 1.69 | 5.03 ± 2.33 | 1.39 ± 0.207 | 1.11 ± 0.126 | 63.7 ± 29.0 |
>0.260 (n = 15) | 0.339 ± 0.0876 | 8.58 ± 1.18 | 4.52 ± 2.50 | 1.40 ± 0.149 | 1.12 ± 0.112 | 42.6 ± 17.7 | |
p value | 0.084 # | 0.474 | 0.008 ** | 0.368 | 0.524 | 0.011 * | |
cis-CHL | ≤0.142 (n = 40) | 0.381 ± 0.102 | 8.87 ± 1.73 | 5.10 ± 2.46 | 1.38 ± 0.200 | 1.12 ± 0.129 | 65.5 ± 30.5 |
>0.142 (n = 15) | 0.391 ± 0.0818 | 8.72 ± 1.04 | 4.51 ± 2.12 | 1.40 ± 184 | 1.10 ± 0.108 | 44.9 ± 15.2 | |
p value | 0.572 | 0.481 | 0.368 | 0.923 | 0.751 | 0.019 * | |
trans-CHL | ≤0.125 (n = 40) | 0.380 ± 0.0952 | 8.92 ± 1.40 | 5.08 ± 2.31 | 1.42 ± 0.173 | 1.13 ± 0.115 | 63.4 ± 25.9 |
>0.125 (n = 15) | 0.369 ± 0.104 | 8.45 ± 2.17 | 4.41 ± 2.50 | 1.29 ± 0.226 | 1.05 ± 0.129 | 45.4 ± 31.1 | |
p value | 0.504 | 0.406 | 0.169 | 0.069 # | 0.078 # | 0.016 * | |
4,4′-DDD | ≤1.88 (n = 40) | 0.398 ± 0.103 | 9.01 ± 1.61 | 5.10 ± 2.34 | 1.42 ± 0.187 | 1.12 ± 0.123 | 64.7 ± 29.2 |
>0.1.88 (n = 15) | 0.346 ± 0.0675 | 8.27 ± 1.56 | 4.42 ± 2.40 | 1.30 ± 0.191 | 1.10 ± 0.122 | 43.6 ± 18.5 | |
p value | 0.169 | 0.214 | 0.145 | 0.071 # | 0.825 | 0.035 * | |
Endosulfan I | ≤0.190 (n = 40) | 0.402 ± 0.0901 | 8.77 ± 1.54 | 5.19 ± 2.48 | 1.41 ± 0.195 | 1.11 ± 0.105 | 60.9 ± 26.3 |
>0.190 (n = 15) | 0.329 ± 0.0992 | 8.91 ± 1.89 | 4.06 ± 1.73 | 1.33 ± 0.188 | 1.11 ± 0.168 | 51.8 ± 34.1 | |
p value | 0.015 * | 0.789 | 0.153 | 0.259 | 0.708 | 0.237 | |
Endrin | ≤0.375 (n = 40) | 0.388 ± 0.0985 | 8.98 ± 1.54 | 5.21 ± 2.41 | 1.40 ± 0.200 | 1.13 ± 0.120 | 59.7 ± 23.7 |
>0.375 (n = 15) | 0.370 ± 0.0945 | 8.34 ± 1.76 | 4.11 ± 2.06 | 1.34 ± 0.177 | 1.05 ± 0.111 | 56.5 ± 38.4 | |
p value | 0.630 | 0.161 | 0.075 | 0.354 | 0.059 # | 0.384 | |
Heptachlor | ≤1.04 (n = 40) | 0.401 ± 0.101 | 9.00 ± 1.66 | 5.34 ± 2.53 | 1.40 ± 0.212 | 1.12 ± 0.127 | 63.4 ± 28.4 |
>1.04 (n = 15) | 0.336 ± 0.0678 | 8.29 ± 1.41 | 3.78 ± 1.28 | 1.36 ± 0.136 | 1.08 ± 0.103 | 47.0 ± 24.7 | |
p value | 0.059 # | 0.186 | 0.033 * | 0.382 | 0.255 | 0.071 # | |
Heptachlor epoxide | ≤0.501 (n = 40) | 0.395 ± 0.101 | 9.11 ± 1.55 | 5.20 ± 2.29 | 1.42 ± 0.189 | 1.13 ± 0.115 | 64.8 ± 27.2 |
>0.501 (n = 15) | 0.355 ± 0.0825 | 8.08 ± 1.59 | 4.24 ± 2.44 | 1.30 ± 0.182 | 1.07 ± 0.131 | 45.0 ± 25.9 | |
p value | 0.308 | 0.105 | 0.052 # | 0.046 * | 0.189 | 0.012 * |
OCPs (ng/g Lipid) | Cognitive Scales (Score) | |||||
≤median a | >median | Odds Ratios | 95% C.I. b | Adjusted c | Crude | |
(n = 35) | (n = 20) | (ORs) | p Value | p Value | ||
4,4’-DDT | 0.025 * | 0.061 | ||||
>1.04 (n = 14) | 12/14 | 2/14 | 1.00 | 1.00 | ||
≤1.04 (n = 41) | 23/41 | 18/41 | 8.09 | 1.30–50.3 | ||
OCPs (ng/g Lipid) | Language Scales (Score) | |||||
≤89 d | >89 | Odds Ratios | 95% C.I. b | Adjusted c | Crude | |
(n = 8) | (n = 47) | (ORs) | p Value | p Value | ||
4,4’-DDT | 0.013 * | 0.017 * | ||||
>1.04 (n = 14) | 5/14 | 9/14 | 1.00 | 1.00 | ||
≤1.04 (n = 41) | 3/41 | 38/41 | 11.9 | 1.69–84.6 | ||
OCPs (ng/g Lipid) | Social Emotional Scales (Score) | |||||
≤89 d | >89 | Odds Ratios | 95% C.I. b | Adjusted c | Crude | |
(n = 17) | (n = 38) | (ORs) | p Value | p Value | ||
trans-CHL | 0.010 * | 0.010 * | ||||
>0.125 (n = 13) | 8/13 | 5/13 | 1.00 | 1.00 | ||
≤0.125 (n = 42) | 9/42 | 33/42 | 6.06 | 1.55–23.8 |
Developmental Domain Covariance | β-Estimated (95%CI) | p Value |
---|---|---|
Cognitive scale (score) a | ||
4.4′-DDT | –7.43 (–12.6–−2.29) | 0.007 ** |
Endrin | –14.2 (–26.8–−1.56) | 0.029 * |
Gender (female vs. male) | 10.3 (3.53–17.1) | 0.005 ** |
Language scale (score) b | ||
Endosulfan I | 21.5 (4.63–38.3) | 0.015 * |
Gender (female vs. male) | 8.76 (2.67–14.8) | 0.007 ** |
Motor scale (score) c | ||
4.4′-DDT | –6.13 (−10.6–−1.65) | 0.010 * |
Heptachlor | 18.5 (4.80–32.2) | 0.010 * |
Heptachlor epoxide | –26.6 (–41.7–−11.5) | 0.001 ** |
Social-emotional scale (score) d | ||
Endrin | –24.5 (–47.8–−1.12) | 0.041 * |
Adaptive behavior scale (score) e | ||
Heptachlor epoxide | –31.4 (–61.4–−1.34) | 0.041 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-C.; Que, D.E.; Bongo, S.J.; Tayo, L.L.; Lin, Y.-H.; Lin, C.-W.; Lin, S.-L.; Gou, Y.-Y.; Hsu, W.-L.; Shy, C.-G.; et al. Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. Int. J. Environ. Res. Public Health 2019, 16, 1438. https://doi.org/10.3390/ijerph16081438
Kao C-C, Que DE, Bongo SJ, Tayo LL, Lin Y-H, Lin C-W, Lin S-L, Gou Y-Y, Hsu W-L, Shy C-G, et al. Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. International Journal of Environmental Research and Public Health. 2019; 16(8):1438. https://doi.org/10.3390/ijerph16081438
Chicago/Turabian StyleKao, Cheng-Chih, Danielle E. Que, Sayre J. Bongo, Lemmuel L. Tayo, Yi-Hsien Lin, Chun-Wen Lin, Sheng-Lun Lin, Yan-You Gou, Wen-Li Hsu, Cherng-Gueih Shy, and et al. 2019. "Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment" International Journal of Environmental Research and Public Health 16, no. 8: 1438. https://doi.org/10.3390/ijerph16081438
APA StyleKao, C. -C., Que, D. E., Bongo, S. J., Tayo, L. L., Lin, Y. -H., Lin, C. -W., Lin, S. -L., Gou, Y. -Y., Hsu, W. -L., Shy, C. -G., Huang, K. -L., Tsai, M. -H., & Chao, H. -R. (2019). Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. International Journal of Environmental Research and Public Health, 16(8), 1438. https://doi.org/10.3390/ijerph16081438