Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species
2.3. Data Collection and Analysis
3. Theory/Calculations
3.1. Habitat Evaluation Procedure (HEP) Theory
- Suitability Index (SI)
- Distance from water (SI1)
- Distribution ratio of forest to feed (Food) (SI2)
- Density of shelter (Vegetation) (SI3)
- Elevation (SI4)
- Distribution ratio of the development areas (SI5)
- Distance from road (SI6)
3.2. Habitat Suitability Index (HSI)
3.3. Habitat Unit (HU) and Total Habitat Unit (THU) Assessment
3.4. Cumulative Habitat Unit (CHU) Assessment
4. Results
4.1. Habitat Evaluation Procedure (HEP) Assessment
4.1.1. Habitat Suitability Index in Eco-Corridor Areas
4.1.2. Total Habitat Unit Value Before and After Construction
4.2. Selection of Eco-Corridor
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Species | 2009 | 2010 | 2011 | 2012 | 2013 | Total | Percentage |
---|---|---|---|---|---|---|---|
Water deer (Hydropotes inermis) | 1490 | 1739 | 1914 | 1996 | 1939 | 9078 | 84.49 |
Racoon dog (Nyctereutes procyonoides) | 258 | 229 | 225 | 225 | 146 | 1083 | 10.08 |
Wild boar (Sus scrofa) | 0 | 0 | 68 | 43 | 31 | 142 | 1.32 |
Korean hare (Lepus sinensis coreanus) | 0 | 51 | 35 | 31 | 13 | 130 | 1.21 |
Small-eared cat (Prionailurus bengalensis) | 33 | 15 | 27 | 21 | 17 | 113 | 1.05 |
Korean badger (Meles meles) | 17 | 14 | 17 | 26 | 28 | 102 | 0.95 |
Siberian weasel (Mustela sibirica coreana) | 27 | 12 | 9 | 5 | 5 | 58 | 0.54 |
Roe deer (Capreolus capreolus) | 2 | 8 | 8 | 7 | 5 | 30 | 0.28 |
Otter (Lutra lutra) | 0 | 0 | 4 | 3 | 2 | 9 | 0.08 |
Total | 1827 | 2068 | 2307 | 2357 | 2186 | 10,745 | 100.00 |
References
- Ministry of Environment. Development of Eco-Corridor Design Technique for Sustainable Urban Green Space; Public Institute: Seojong, Korea, 2004. [Google Scholar]
- Ministry of Environment. Guidelines for the Establishment and Management of Eco-Corridor; Public Institute: Seojong, Korea, 2010. [Google Scholar]
- Lee, S.D.; Kwon, J.H.; Kim, A.R.; Jung, J.H. A Study on Ecological Evaluation of Habitat Suitability Index using GIS-With a case study of Prionailurus bengalensis in Samjang-Sanchung Road Construction-. J. Environ. Impact Assess. Sci. 2012, 12, 801–811. [Google Scholar]
- Tanaka, A. Theory and Practices for Habitat Evaluation Procedure; Hanulbooks: Paju, Korea, 2015. [Google Scholar]
- U.S. Fish and Wildlife Service. Habitat Evaluation Procedures (HEP); ESM 102; U.S. Fish and Wildlife Service: Washington, DC, USA; U.S. Census Bureau: Suitland, MD, USA, 1980.
- Korea Expressway Corporation. Environmental Impact Assessment of Highway Construction Project between Chuncheon and Yangyang; Public Institute: Kimcheon, Korea, 2007. [Google Scholar]
- A Study on the Environmental Impacts Assessment of Donghongcheon-Inje Construction Project; Korea Engineering Consultants Corporation: Seoul, Korea, 2015.
- Harris, R.B.; Duckworth, J.W. Hydropotes Inermis; The IUCN Red List of Threatened Species: Leckford, UK, 2015. [Google Scholar]
- Allen, J. Mammals of China and Mongolia; Part two; The American museum of Natural History: New York, NY, USA, 1940. [Google Scholar]
- Wang, S. China Red Data Book of Endangered Animals (Mammal Volume); Science Press: Beijing, China, 1998. [Google Scholar]
- Wilson, D. Mammal Species of the World, 2nd ed.; Smithsonian Institution Press: Washington, DC, USA, 1993. [Google Scholar]
- Lee, S.D.; Jo, H.S.; Kim, J.G. A Study of Wildlife Roadkill in Joongang Highway. J. Environ. Impact Assess. Sci. 2004, 13, 21–23. [Google Scholar]
- Brotons, L.; Herrando, S. Factors affecting bird communities in fragments of secondary pine forest in the north-western Mediterranean basin. J. Acta Oecol. 2001, 22, 21–31. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, S.D. Home range study of the Korean water deer (Hydropotes inermis) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat sue pattern. J. Ecol. Field Biol. 2011, 34, 365–370. [Google Scholar] [CrossRef]
- Shin, S.A.; Ahn, T.M. Approach to the Location of Wildlife Corridors on Highways—Between Yang-jae and Pan-gyo ICs of Seoul-Busan Highway, Korea. J. Korea Soc. Environ. Restor. Technol. 2008, 11, 19–27. [Google Scholar]
- Rho, P.H. Quantitative Analysis on Physical Environments Affecting Spatial Distribution of Korean Water Deer (Hydropotes inermis argyropus) in Nakdong River Basin. J. Environ. Sci. 2012, 16, 257–266. [Google Scholar]
- Korea Expressway Corporation. Roadkill Data for Expressways from 2009 to 2013; Public Institute: Gimcheon, Korea, 2013. [Google Scholar]
- Newsom, J.D. Coastal Plain. White-Tailed Deer: Ecology and Management; Stackpole Books: Harrisburg, PA, USA, 1984. [Google Scholar]
- Zang, E. Daytime activity budget in the Chinese water deer. J. Mammal. 2000, 64, 163–172. [Google Scholar]
- Yang, Q.; Meng, X.X.; Lin, X.; Feng, Z.J. Conservation status and cause of decline of musk deer (Moschus spp.) in China. Institute of Zoology. Biolog. Conserv. 2003, 109, 333–342. [Google Scholar] [CrossRef]
- Cook, A.; Farrell, L. Chinese Water Deer; The British Deer Society: London, UK, 1998. [Google Scholar]
- Short, H.L. Habitat Suitability Index Models: White-Tailed Deer in the GULF of Mexico and South Atlantic Coastal Plains; Fish and Wildlife Service Biological Report 82; U.S. Geological Survey Publications Warehouse: Washington, DC, USA, 1986.
- Kim, B.J.; Oh, D.H.; Chun, S.H.; Lee, S.D. Distribution, density, and habitat use of the Korean water deer (Hydropotes inermis argyropus) in Korea. J. Landsc. Ecolog. Eng. 2011, 7, 291–297. [Google Scholar] [CrossRef]
- Kim, N.S. Map Production and Space Analysis Using Arc View; Hanulbooks: Paju, Korea, 2005. [Google Scholar]
- Kim, N.S. Data Management and Spatial Analysis Using Arc GIS; Hanulbooks: Paju, Korea, 2010. [Google Scholar]
- Kim, Y.P. Landscape Using Arc View; Daegu University Press: Gyeongsan, Korea, 2009. [Google Scholar]
- David, L.U.; John, P.G. Applying Habitat Evaluation Procedures (HEP) to wildlife area planning in Missouri. J. Wildl. Soc. 1983, 11, 215–222. [Google Scholar]
- Fahrig, L. Effects of habitat Fragmentation on Biodiversity. Ann. Rev. Ecol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Williams, K.C.; Todd, S.F. Tree Seeding and Sapling Density and Deer Browsing Incidence on recently Logged and Mature Non-industrial Private Forestlands in Virginia, USA. For. Ecol. Manag. 2007, 242, 671–677. [Google Scholar]
- Shim, Y.J.; Cho, D.G.; Hong, J.P.; Kim, D.H.; Park, Y.S.; Sung, H.C. Site Selection of Narrow-mouth Frog (Kaloula borealis) Habitat Restoration Using Habitat Suitability Index. J. Korea Soc. Environ. Restor. Reveg. Technol. 2015, 18, 33–44. [Google Scholar]
- Kim, D.K.; Song, W.K. A Study on the Analytic Unit of Habitat Suitability Assessment and Selection in Conservation Areas for Leopard Cat (Prionailurus bengalensis)—Focus on Chungcheong Province Area. J. Korean Inst. Landsc. Archit. 2008, 36, 64–72. [Google Scholar]
- Park, Y.S.; Chang, M.H.; Cha, J.Y.; Cho, D.G.; Kim, S.H.; Lee, S.W. A Study on Site Selection for Reeve`s turtle (Maunemys reevesii) Habitats Using Habitat Suitability Index. J. Korean Environ. Res. Technol. 2015, 18, 109–118. [Google Scholar]
- Oh, T.G.; Kim, Y.C.; Yang, Y.S.; Kim, C.K.; Lee, M.O. A Suitability Selection for Marine Afforestation Using Habitat Evaluation Procedure. J. Korean Soc. Mar. Eng. 2010, 34, 894–905. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.L.; Goldman, C.R.; Heanue, K. Road Ecology: Science and Solutions; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Jacob, C.; Thorin, S.; Pioch, S. Marine biodiversity offsetting: An analysis of the emergence of an environmental governance system in California. Mar. Policy 2018, 98, 128–141. [Google Scholar] [CrossRef]
- Moorcroft, P.R. Mechanistic Approaches to Understanding and Predicting Mammalian Space Use: Recent Advances Future Directions. J. Mamm. 2012, 93, 903–916. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Yang, Z.; Wieprecht, S.; Zhang, S.; Wu, Y. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. J. Renew. Sustain. Energy Rev. 2017, 68, 748–762. [Google Scholar] [CrossRef]
- Torabian, S.; Soffianian, A.; Fakheran, S.; Asgarian, A.; Feizabadi, H.A.; Senn, J. Habitat Suitability Mapping for sand Cat (Felis margarita) in Central Iran Using remote sensing Techniques. Spat. Inf. Res. 2018, 26, 11–20. [Google Scholar] [CrossRef]
- Mitchell, M.S.; Zimmerman, J.; Powell, A. Test of a Habitat Suitability Index for Black Bear in southern Appalachians. Wild. Soc. Bull. 2002, 30, 794–808. [Google Scholar]
Index | Analytical Method |
---|---|
SI, Suitability Index | Value of 0–1 (highest) generated based on the ecological characteristics of the species. |
HSI, Habitat Suitability Index | Value of 0–1 (highest) with the average SI for each species |
HU, Habitat Unit | HSI multiplied by the areas |
THU, Total Habitat Unit | Total of HU, which implies the quality and quantity of habitat type. a = 3, b = 20, c = 50 years after construction of eco-corridor |
CHU, Cumulative Habitat Unit | THU accumulated over time showing the cumulative habitat unit of the species (i = year, P = time of duration, AHSI = weighted average of HSI, Ai: area of ith year) |
SI Value | Value | Area (km2) | Percentage (%) |
---|---|---|---|
0 ≤ SI < 0.2 | 1200–1600 | 350.56 | 16.76 |
0.2 ≤ SI < 0.4 | 900–1200 | 594.27 | 28.41 |
0.4 ≤ SI < 0.6 | 600–900 | 402.79 | 19.26 |
0.6 ≤ SI < 0.8 | 300–600 | 360.19 | 17.22 |
0.8 ≤ SI ≤ 1 | 0–300 | 383.82 | 18.35 |
Total | 2091.63 | 100 |
SI Value | Value | Area (km2) | % |
---|---|---|---|
SI = 0.6 | Mixed oak forest | 630.62 | 32.44 |
SI = 1.0 | Quercus variabilis | 73.60 | 3.79 |
SI = 1.0 | Quercus dentata | 0.54 | 0.03 |
SI = 0.4 | Pine tree | 299.50 | 15.41 |
SI = 0.8 | Carpinus laxiflora | 0.27 | 0.01 |
SI = 1.0 | Quercus acutissima | 0.94 | 0.05 |
SI = 0.4 | Nut pine tree | 0.40 | 0.03 |
SI = 1.0 | Mongolian oak | 929.78 | 47.83 |
SI = 0.2 | Other | 2.96 | 0.15 |
SI = 0.0 | Base rock | 5.37 | 0.28 |
Total | 1943.97 | 100 |
SI Value | Value | Area (km2) | % |
---|---|---|---|
SI = 0.2 | Low | 51.67 | 2.17 |
SI = 0.5 | Medium | 932.84 | 39.20 |
SI = 1.0 | High | 1395.21 | 58.63 |
Total | 2379.72 | 100 |
SI Value | Value | Area (km2) | % |
---|---|---|---|
0 ≤ SI < 1 | 0–400 | 932.11 | 6.19 |
SI = 1 | 400–600 | 1151.32 | 7.65 |
SI = 1 | 600–800 | 11,091.93 | 73.66 |
0.5 < SI ≤ 1 | 800–1000 | 993.30 | 6.60 |
0 < SI ≤ 0.5 | 1000–1200 | 586.64 | 3.90 |
SI = 0 | <1200 | 303.20 | 2.01 |
Total | 15,058.51 | 100 |
SI | Urban and Barren Area (%) |
---|---|
SI = 0.9 | 1.06 |
SI Value | Value | Area (km2) | % |
---|---|---|---|
0 ≤ SI < 0.2 | 0–400 | 785.72 | 17.17 |
0.2 ≤ SI < 0.4 | 400–800 | 378.72 | 8.28 |
0.4 ≤ SI < 0.6 | 800–1200 | 496.05 | 10.84 |
0.6 ≤ SI < 0.8 | 1200–1600 | 339.02 | 7.41 |
0.8 ≤ SI < 1.0 | 1600–2000 | 262.44 | 5.73 |
SI = 1.0 | <2000 | 2314.44 | 50.57 |
Total | 4576.39 | 100 |
Eco-Corridor Sites | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
No construction | 90.89 | 72.48 | 78.36 | 129.39 | 119.58 | 107.80 | 103.88 |
After construction | 18.27 | 22.43 | 23.41 | 25.38 | 39.11 | 22.43 | 23.02 |
After eco-corridor | 67.33 | 65.46 | 65.07 | 94.90 | 77.24 | 91.57 | 61.15 |
Net increase | 49.07 | 44.03 | 41.66 | 69.53 | 38.13 | 69.13 | 38.13 |
Eco-corridor sites | 8 | 9 | 10 | 11 | 12 | 13 | Total |
No construction | 99.95 | 107.80 | 74.44 | 88.18 | 88.18 | 88.18 | 1211 |
After construction | 23.02 | 23.41 | 24.98 | 21.45 | 22.24 | 24.45 | 299 |
After eco-corridor | 61.15 | 61.54 | 66.45 | 56.91 | 66.25 | 69.39 | 662 |
Net increase | 38.13 | 38.13 | 41.48 | 35.46 | 44.01 | 44.94 | 363 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lee, S. Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment. Int. J. Environ. Res. Public Health 2019, 16, 1437. https://doi.org/10.3390/ijerph16081437
Choi J, Lee S. Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment. International Journal of Environmental Research and Public Health. 2019; 16(8):1437. https://doi.org/10.3390/ijerph16081437
Chicago/Turabian StyleChoi, Jiyoung, and Sangdon Lee. 2019. "Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment" International Journal of Environmental Research and Public Health 16, no. 8: 1437. https://doi.org/10.3390/ijerph16081437
APA StyleChoi, J., & Lee, S. (2019). Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment. International Journal of Environmental Research and Public Health, 16(8), 1437. https://doi.org/10.3390/ijerph16081437