Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review and Analysis
2.2. Facility Studied in this Study and Airborne Bacterial Sampling
2.3. Meta-Analysis
3. Results and Discussion
3.1. Concentration Characteristics of Airborne Bacteria by Facility Type
3.2. Indoor/Outdoor Ratio of Airborne Bacteria
3.3. Effect of Indoor Thermal Environment and Environmental Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Righi, E.; Aggazzotti, G.; Fantuzzi, G.; Ciccarese, V.; Predieri, G. Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci. Total Environ. 2002, 286, 41–50. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, K.R. Indoor air pollution: A global health concern. Br. Med. Bull. 2003, 68, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Shinobara, N.; Kai, Y.; Mizukoshi, A.; Fujii, M.; Kumagai, K.; Okuizumi, Y.; Jona, M.; Yanagisawa, Y. On-site passive flux sampler measurement of emission rates of carbonyls and VOCs form multiple indoor sources. Build Environ. 2009, 44, 859–863. [Google Scholar] [CrossRef]
- Missia, D.A.; Demetriou, E.; Michael, N.; Tolis, E.I.; Bartzis, J.G. Indoor exposure from building materials: A field study. Atmos. Environ. 2010, 44, 4388–4395. [Google Scholar] [CrossRef]
- Owen, M.K.; Ensor, D.S.; Sparks, L.E. Airborne particle sizes and sources found in indoor air. Atmos. Environ. A 1992, 26, 2149–2162. [Google Scholar] [CrossRef]
- Arturo, B.; Gwen, W.; Alan, M.D.; Catherine, L.G.; Cristina, L.H. School-based identification of asthma in a low-income population. Pediatric Pulmon 2000, 30, 297–301. [Google Scholar]
- Lacey, J.; Dutkiewicz, J. Bioaerosols and occupational lung disease. J Aerosol Sci 1994, 25, 1371–1404. [Google Scholar] [CrossRef]
- Cox, C.S.; Wathes, C.M. (Eds.) Bioaerosols Handbook; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Macher, J.M.; First, M.W. Personal air samplers for measuring occupational exposures to biological hazards. Am. Ind. Hygiene Assoc. J. 1984, 45, 76–83. [Google Scholar] [CrossRef]
- Chatigny, M.A.; Macher, J.M.; Burge, H.A.; Solomon, W.R. Sampling airborne microorganisms and aeroallergens. Air Sampl. Instrum. Eval. Atmos. Contam. 1989, 7, 199–220. [Google Scholar]
- Law, A.K.; Chau, C.K.; Chan, G.Y. Characteristics of bioaerosol profile in office buildings in Hong Kong. Build. Environ. 2001, 36, 527–541. [Google Scholar] [CrossRef]
- Golofit-Szymczak, M.; Gorny, R.L. Bacterial and fungal aerosols in air-conditioned office buildings in Warsaw, Poland—The winter season. Int. J. Occup. Saf. Ergon. 2010, 16, 465–476. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Paw, U.K.T.; Lis, D.O.; Wlazło, A.; Ulfig, K. Bacterial and fungal aerosol in indoor environment in Upper Silesia. Poland. Atmos. Environ. 2000, 34, 3833–3842. [Google Scholar] [CrossRef]
- Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, K.Y.; Kim, J.C.; Jeon, H.J.; Choi, D.M.; Kim, M.H.; Park, Y.J. A study of excess ratio for guideline of indoor air pollutants in classroom of kindergartens. J. Korean Soc. Indoor Environ. 2007, 4, 14–22. [Google Scholar]
- Hyvärinen, A.; Vahteristo, M.; Meklin, T.; Jantunen, M.; Nevalainen, A.; Moschandreas, D. Temporal and spatial variation of fungal concentrations in indoor air. Aerosol Sci. Technol. 2001, 35, 688–695. [Google Scholar] [CrossRef]
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Source strengths for indoor human activities that resuspend particulate matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef]
- Koistinen, K.J.; Edwards, R.D.; Mathys, P.; Ruuskanen, J.; Künzli, N.; Jantunen, M.J. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand. J. Work Environ. Health 2004, 30, 36–46. [Google Scholar]
- Kopperud, R.J.; Ferro, A.R.; Hildemann, L.M. Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. J. Air Waste Manag. Assoc. 2004, 54, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.P.; Stetzenbach, L.D. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl. Environ. Microbiol. 1993, 59, 219–226. [Google Scholar]
- Choi, J.H.; Park, H.J.; Oh, Y.J.; An, J.H.; Park, J.S.; Kim, K.R.; Sin, J.H.; Eo, S.M.; Jung, K.; Lee, J.W.; Jang, B.K.; Son, B.S. Reality analysis and evaluation according to indoor air quality management law of multi-use facilities. J. Odor Indoor Environ. 2017, 16, 175–181. [Google Scholar] [CrossRef]
- Moon, H.J.; An, K.; Choi, M.S. The status and causes of indoor airborne micro-organisms activities in residential buildings. J. Korean Soc. Living Environ. Syst. 2012, 19, 669–675. [Google Scholar]
- Gallup, J.M.; Kozak, P.; Cummins, L.; Gillman, S. Indoor mold spore exposure: Characteristics of 127 homes in southern California with endogenous mold problems. In Advances in Aerobiology; Boehm, G., Leuschner, R.M., Eds.; Birkhäuser: Basel, Switzerland, 1987; pp. 139–142. [Google Scholar]
- Fang, Z.; Ouyang, Z.; Zheng, H.; Wang, X.; Hu, L. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb. Ecol. 2007, 54, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-S.; Choi, S.-G.; Hon, J.-K. The study on the distribution of indoor concentration of microorganism in commercial building. Korean J. Air-Cond. Refrig. Eng. 2006, 18, 620–626. [Google Scholar]
- Kim, K.Y.; Jang, G.Y.; Park, J.B.; Kim, C.N.; Lee, K.J. Field study of characteristics of airborne bacteria distributed in the regulated public facilities. J. Korean Soc. Occup. Environ. Hyg. 2006, 16, 1–10. [Google Scholar]
- Aylor, D.E.; Paw, U.K.T. The role of electrostatics in spore liberation by Drechslera turcica. Mycologia 1980, 72, 1213–1219. [Google Scholar] [CrossRef]
- Lehtonen, M.; Reponen, T.; Nevalainen, A. Everyday activities and variation of fungal spore concentrations in indoor air. Int. Biodeterior Biodegrad. 1993, 31, 25–39. [Google Scholar] [CrossRef]
- Hargreaves, M.; Parappukkaran, S.; Morawska, L.; Hitchins, J.; He, C.; Gilbert, D. A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Sci. Total Environ. 2003, 312, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Brągoszewska, E.; Pastuszka, J.S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 2018, 34, 241–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.C.; Kung, P.Y.; Wu, T.N.; Shen, Y.H. Characterization of indoor-air bioaerosols in Southern Taiwan. Aerosol Air Qual. Res. 2012, 12, 651–661. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J. Bacterial and Fungal Aerosols in Rural Nursery Schools in Southern Poland. Atmosphere 2016, 7, 142. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef]
- Zhu, H.; Phelan, P.; Duan, T.; Raupp, G.; Fernando, H.J.S. Characterizations and relationships between outdoor and indoor bioaerosols in an office building. Chin. Particuol. 2003, 1, 119–123. [Google Scholar] [CrossRef]
- Shaffer, B.T.; Lighthart, B. Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microb. Ecol. 1997, 34, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kim, Y.S.; Lee, C.M.; Cho, M.S.; Byeon, S.H. Atmospheric distribution characteristics of airborne bacteria in part of Seoul area. J. Korean Soc. Atmos. Environ. 2009, 25, 493–502. [Google Scholar] [CrossRef]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Health Part B Crit. Rev. 2015, 18, 43–69. [Google Scholar] [CrossRef]
- Mancinelli, R.L.; Shulls, W.A. Airborne bacteria in an urban environment. Appl. Environ. Microbiol. 1978, 35, 1095–1101. [Google Scholar] [PubMed]
- Hunter, C.A.; Grant, C.; Flannigan, B.; Bravery, A.F. Mould in buildings: The air spora of domestic dwellings. Int. Biodeterior 1988, 24, 81–101. [Google Scholar] [CrossRef]
- Ren, P.; Jankun, T.M.; Belanger, K.; Bracken, M.B.; Leaderer, B.P. The relation between fungal propagules in indoor air and home characteristics. Allergy 2001, 56, 419–424. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Nainar, P.; Rajasekar, A. Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: A case study. Aerobiologia 2012, 28, 375–390. [Google Scholar] [CrossRef]
Facilities | n | Concentration (CFU/m3) | F-Value (p-Value) | Duncan Coefficient | |
---|---|---|---|---|---|
Mean | SD * | ||||
Daycares | 52 | 339.4 | 761.1 | 4.62 (<0.01) | a |
Medical centers | 49 | 138.0 | 128.0 | a,b | |
Eldercare centers | 35 | 60.5 | 40.5 | b | |
Postnatal care centers | 54 | 91.2 | 84.4 | b |
Source | Region | n | Concentration (CFU/m3) | p | Duncan Coefficient | |
---|---|---|---|---|---|---|
Mean | SD * | |||||
Indoor | Industrial area | 54 | 118.6 | 113.5 | >0.05 | a |
Urban area | 64 | 217.7 | 594.0 | a | ||
Forested area | 72 | 154.4 | 372.4 | a | ||
Outdoor | Industrial area | 54 | 45.9 | 35.5 | <0.05 | a |
Urban area | 65 | 74.9 | 59.7 | b | ||
Forested area | 72 | 50.1 | 40.6 | a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.-M.; Hong, H.J.; Park, S.H.; Yoon, D.K.; Nam Goung, S.J.; Lee, C.M. Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1483. https://doi.org/10.3390/ijerph16091483
Cho E-M, Hong HJ, Park SH, Yoon DK, Nam Goung SJ, Lee CM. Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis. International Journal of Environmental Research and Public Health. 2019; 16(9):1483. https://doi.org/10.3390/ijerph16091483
Chicago/Turabian StyleCho, Eun-Min, Hyong Jin Hong, Si Hyun Park, Dan Ki Yoon, Sun Ju Nam Goung, and Cheol Min Lee. 2019. "Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis" International Journal of Environmental Research and Public Health 16, no. 9: 1483. https://doi.org/10.3390/ijerph16091483
APA StyleCho, E. -M., Hong, H. J., Park, S. H., Yoon, D. K., Nam Goung, S. J., & Lee, C. M. (2019). Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis. International Journal of Environmental Research and Public Health, 16(9), 1483. https://doi.org/10.3390/ijerph16091483