Associations of Class-Time Sitting, Stepping and Sit-to-Stand Transitions with Cognitive Functions and Brain Activity in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Participants
2.3. Procedures
2.4. Measures
2.4.1. Demographics
2.4.2. Sitting Time, Stepping Time, and Sit-to-Step Transitions
2.4.3. Response Inhibition
2.4.4. Lapses of Attention
2.4.5. Working Memory
2.4.6. Cortical Haemodynamic Response (Brain Activity)
2.5. Data Management
2.5.1. Sitting Time, Stepping Time and Sit-to-Step Transitions
2.5.2. Response Inhibition
2.5.3. Lapses of Attention
2.5.4. Brain Activity
2.5.5. Demographic Data Processing
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Process | Specific | Value | Description |
---|---|---|---|
HMR intensity to OD | n/a | n/a | The intensity data (number of time points multiplied by the number of data channels) are divided by the mean, and then converted to the change in OD. |
HMR motion artefact remover by channel | Time motion window (s) Time mask (s) SD threshold Amplitude threshold | 0.5 1.0 50.0 0.10 | These filters identify and remove motion artefacts. Segments of data channels that exhibit a change that are greater than: (i) the SD threshold multiplied by the SD of the intensity data, and/or (ii) the indicated amplitude threshold, within an indicated time range, are marked as artefacts for +/− the mask time. |
HMR motion correction PCA filter | Number of principal components | 0.97 | This function uses PCA to filter the segments identified as motion artefacts, according to the number of principal components to remove from the data. |
HMR band pass filter | High pass filter Low pass filter | 0.010 0.20 | This perform bandpass filters: high pass filter frequency (Hz), typical values between 0 and 0.02; low pass filter frequency (Hz), typical values between 0.5 and 3. |
HMR OD to concentrations | Partial pathlength factors | 6.0 6.0 | For each wavelength, partial pathlength factors are identified. Typical values are around 6. |
HMR block average | Time range (s) | −5.0 30.0 | This part of the process calculates the block average for each condition within the defined time range. |
- dod = hmrIntensity2OD(d);
- [tIncAuto,tIncChAuto] = hmrMotionArtifactByChannel(dod,t,SD,tIncMan,0.5,1,50,0.1);
- [dod,svsMotion,nSVMotion] = hmrMotionCorrectPCA(SD,dod,tIncAuto,0.97);
- dod = hmrBandpassFilt(dod,t,0.01,0.2);
- dc = hmrOD2Conc(dod,SD,[6 6]);
- [dcAvg,dcAvgStd,tHRF,nTrials,dcSum2] = hmrBlockAvg(dc,s,t,[−5 30]);
Cognitive Functions/Brain Activity | Sitting Time | Stepping Time | Sit-to-Stand Transitions |
---|---|---|---|
Inhibition RT | 0.03 | −0.24 | −0.06 |
Inhibition ACC | 0.07 | −0.19 | −0.17 |
Lapses of attention (τ) | 0.16 | −0.10 | −0.08 |
Working memory | 0.03 | −0.05 | −0.09 |
fNIRS—O2Hb | −0.02 | 0.11 | −0.01 |
fNIRS—HHb | −0.03 | 0.01 | 0.11 |
References
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-h movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef]
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M.; et al. Evidence based physical activity for school-age youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1223–1224. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Activity 2010, 7, 40. [Google Scholar] [CrossRef]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Connor Gorber, S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Activity 2011, 8, 98. [Google Scholar] [CrossRef]
- Sedentary Behaviour Research Network. Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar] [CrossRef]
- Falck, R.S.; Davis, J.C.; Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2016, 51, 800–811. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T. Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 2010, 59, 2717–2725. [Google Scholar] [CrossRef]
- Magnon, V.; Vallet, G.T.; Auxiette, C. Sedentary Behavior at Work and Cognitive Functioning: A Systematic Review. Front. Public Health 2018, 6, 239. [Google Scholar] [CrossRef]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population-health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. Diabetologia 2012, 55, 2895–2905. [Google Scholar] [CrossRef]
- Salmon, J.; Tremblay, M.S.; Marshall, S.J.; Hume, C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am. J. Prev. Med. 2011, 41, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef] [PubMed]
- Cliff, D.P.; Hesketh, K.D.; Vella, S.A.; Hinkley, T.; Tsiros, M.D.; Ridgers, N.D.; Carver, A.; Veitch, J.; Parrish, A.M.; Hardy, L.L.; et al. Objectively measured sedentary behaviour and health and development in children and adolescents: Systematic review and meta-analysis. Obes. Rev. 2016, 17, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Vaisto, J.; Lintu, N.; Westgate, K.; Ekelund, U.; Poikkeus, A.M.; Brage, S.; Lakka, T.A. Physical activity and sedentary time in relation to academic achievement in children. J. Sci. Med. Sport 2017, 20, 583–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, L.; Santos, R.; Mota, J.; Pereira, B.; Lopes, V. Objectively measured sedentary time and academic achievement in schoolchildren. J. Sports Sci. 2017, 35, 463–469. [Google Scholar] [CrossRef]
- Syväoja, H.J.; Kantomaa, M.T.; Ahonen, T.; Hakonen, H.; Kankaanpää, A.; Tammelin, T.H. Physical activity, sedentary behavior, and academic performance in Finnish children. Med. Sci. Sports Exerc. 2013, 45, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Martinez-Gomez, D.; Sallis, J.F.; Cabanas-Sanchez, V.; Fernandez-Santos, J.; Castro-Pinero, J.; Veiga, O.L. Objectively measured and self-reported leisure-time sedentary behavior and academic performance in youth: The UP&DOWN Study. Prev. Med. 2015, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22, 15–23. [Google Scholar] [PubMed]
- Ucci, M.; Law, S.; Andrews, R.; Fisher, A.; Smith, L.; Sawyer, A.; Marmot, A. Indoor school environments, physical activity, sitting behaviour and pedagogy: A scoping review. Build. Res. Inf. 2015, 43, 566–581. [Google Scholar] [CrossRef]
- Clemes, S.A.; Barber, S.E.; Bingham, D.D.; Ridgers, N.D.; Fletcher, E.; Pearson, N.; Salmon, J.; Dunstan, D.W. Reducing children’s classroom sitting time using sit-to-stand desks: Findings from pilot studies in UK and Australian primary schools. J. Public Health 2015, 38, 526–533. [Google Scholar] [CrossRef]
- Salmon, J. Novel strategies to promote children’s physical activities and reduce sedentary behavior. J. Phys. Activity Health 2010, 7 (Suppl. 3), S299–S306. [Google Scholar] [CrossRef]
- Mazzoli, E.; Koorts, H.; Salmon, J.; Pesce, C.; May, T.; Teo, W.-P.; Barnett, L.M. Feasibility of breaking up sitting time in mainstream and special schools with a cognitively challenging motor task. J. Sport Health Sci. 2019, 8, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Erwin, H.; Beighle, A.; Morgan, C.F.; Noland, M. Effect of a low-cost, teacher-directed classroom intervention on elementary students’ physical activity. J. Sch. Health 2011, 81, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Hinckson, E.; Salmon, J.; Benden, M.; Clemes, S.A.; Sudholz, B.; Barber, S.E.; Aminian, S.; Ridgers, N.D. Standing Classrooms: Research and Lessons Learned from Around the World. Sports Med. 2016, 46, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; O’Connell, S.; Braithwaite, R.E. Sedentary behaviour interventions in young people: A meta-analysis. Br. J. Sports Med. 2011, 45, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Minges, K.E.; Chao, A.M.; Irwin, M.L.; Owen, N.; Park, C.; Whittemore, R.; Salmon, J. Classroom Standing Desks and Sedentary Behavior: A Systematic Review. Pediatrics 2016, 137, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Activity 2017, 14, 114. [Google Scholar] [CrossRef]
- Sternberg, R.J.; Sternberg, K.; Mio, J.S. Cognitive Psychology, 6th ed.; Wadsworth/Cengage Learning: Belmont, CA, USA, 2011; pp. 1–40. [Google Scholar]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Diamond, A. Activities and Programs That Improve Children’s Executive Functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Otero, T.M.; Barker, L.A. The Frontal Lobes and Executive Functioning. In Handbook of Executive Functioning; Goldstein, S., Naglieri, J.A., Eds.; Springer: New York, NY, USA, 2014; pp. 29–44. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; Van Den Berg, V.; Uijtdewilligen, L.; De Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2018. [Google Scholar] [CrossRef]
- Alvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sanchez-Lopez, M.; Martinez-Hortelano, J.A.; Martinez-Vizcaino, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef]
- Donders, F.C. On the speed of mental processes. Acta Psychol. 1969, 30, 412–431. [Google Scholar] [CrossRef]
- Unsworth, N.; Redick, T.S.; Lakey, C.E.; Young, D.L. Lapses in sustained attention and their relation to executive control and fluid abilities: An individual differences investigation. Intelligence 2010, 38, 111–122. [Google Scholar] [CrossRef]
- Unsworth, N.; McMillan, B.D.; Brewer, G.A.; Spillers, G.J. Everyday attention failures: An individual differences investigation. J. Exp. Psychol. Learn. Mem. Cogn. 2012, 38, 1765–1772. [Google Scholar] [CrossRef]
- Lindquist, S.I.; McLean, J.P. Daydreaming and its correlates in an educational environment. Learn. Individ. Differ. 2011, 21, 158–167. [Google Scholar] [CrossRef]
- Funahashi, S.; Andreau, J.M. Prefrontal cortex and neural mechanisms of executive function. J. Physiol. Paris 2013, 107, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2018. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef] [PubMed]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Homack, S.; Riccio, C.A. A meta-analysis of the sensitivity and specificity of the Stroop Color and Word Test with children. Arch. Clin. Neuropsychol. 2004, 19, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Mücke, M.; Andrä, C.; Gerber, M.; Pühse, U.; Ludyga, S. Moderate-to-vigorous physical activity, executive functions and prefrontal brain oxygenation in children: A functional near-infrared spectroscopy study. J. Sports Sci. 2018, 36, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Aadland, K.N.; Moe, V.F.; Aadland, E.; Anderssen, S.A.; Resaland, G.K.; Ommundsen, Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Activity 2017, 12, 10–18. [Google Scholar] [CrossRef]
- Syvaoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpaa, A.; Kantomaa, M.T. The Associations of Objectively Measured Physical Activity and Sedentary Time with Cognitive Functions in School-Aged Children. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Aggio, D.; Smith, L.; Fisher, A.; Hamer, M. Context-Specific Associations of Physical Activity and Sedentary Behavior With Cognition in Children. Am. J. Epidemiol. 2016, 183, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Van Der Niet, A.G.; Smith, J.; Scherder, E.J.A.; Oosterlaan, J.; Hartman, E.; Visscher, C. Associations between daily physical activity and executive functioning in primary school-aged children. J. Sci. Med. Sport 2015, 18, 673–677. [Google Scholar] [CrossRef]
- Aminian, S.; Hinckson, E.A. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int. J. Behav. Nutr. Phys. Activity 2012, 9, 119. [Google Scholar] [CrossRef]
- Ridley, K.; Ridgers, N.D.; Salmon, J. Criterion validity of the activPALTM and ActiGraph for assessing children’s sitting and standing time in a school classroom setting. Int. J. Behav. Nutr. Phys. Activity 2016, 13. [Google Scholar] [CrossRef]
- Moher, D.; Schulz, K.F.; Altman, D.G. The CONSORT statement: Revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 2001, 357, 1191–1194. [Google Scholar] [CrossRef]
- Gomez, P.; Ratcliff, R.; Perea, M. A model of the go/no-go task. J. Exp. Psychol. Gen. 2007, 136, 389–413. [Google Scholar] [CrossRef] [PubMed]
- He, J.L.; Fuelscher, I.; Coxon, J.; Barhoun, P.; Parmar, D.; Enticott, P.G.; Hyde, C. Impaired motor inhibition in developmental coordination disorder. Brain Cogn. 2018, 127, 23–33. [Google Scholar] [CrossRef]
- Heathcote, A. RTSYS: A DOS application for the analysis of reaction time data. Behav. Res. Methods Instrum. Comput. 1996, 28, 427–445. [Google Scholar] [CrossRef] [Green Version]
- Carriere, J.S.; Cheyne, J.A.; Smilek, D. Everyday attention lapses and memory failures: The affective consequences of mindlessness. Conscious. Cogn. 2008, 17, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.; Lipszyc, J.; Dupuis, A.; Thayapararajah, S.W.; Schachar, R.J.J.o.A.P. Response inhibition and psychopathology: A meta-analysis of go/no-go task performance. J. Abnorm. Psychol. 2014, 123, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Tulsky, D.S.; Carlozzi, N.E.; Chevalier, N.; Espy, K.A.; Beaumont, J.L.; Mungas, D. V. NIH Toolbox Cognition Battery (CB): Measuring working memory. Monogr. Soc. Res. Child Dev. 2013, 78, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Delpy, D.T.; Cope, M. Quantification in tissue near-infrared spectroscopy. Philos. Trans. Royal Soc. B 1997, 352, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Ridgers, N.D.; Timperio, A.; Crawford, D.; Salmon, J. Five-year changes in school recess and lunchtime and the contribution to children’s daily physical activity. Br. J. Sports Med. 2012, 46, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Janssen, X.; Basterfield, L.; Parkinson, K.N.; Pearce, M.S.; Reilly, J.K.; Adamson, A.J.; Reilly, J.J. Objective measurement of sedentary behavior: Impact of non-wear time rules on changes in sedentary time. BMC Public Health 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Massidda, D. Retimes: Reaction Time Analysis, R package version 0.1-2; 2013. Available online: https://cran.r-project.org/web/packages/retimes/retimes.pdf (accessed on 22 April 2019).
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage 2014, 85, 181–191. [Google Scholar] [CrossRef]
- Malonek, D.; Grinvald, A. Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping. Science 1996, 272, 551–554. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef]
- Hidding, L.M.; Altenburg, T.M.; van Ekris, E.; Chinapaw, M.J.M. Why Do Children Engage in Sedentary Behavior? Child- and Parent-Perceived Determinants. Int. J. Environ. Res. Public Health 2017, 14, 671. [Google Scholar] [CrossRef]
- Salmon, J.; Arundell, L.; Hume, C.; Brown, H.; Hesketh, K.; Dunstan, D.W.; Daly, R.M.; Pearson, N.; Cerin, E.; Moodie, M.; et al. A cluster-randomized controlled trial to reduce sedentary behavior and promote physical activity and health of 8–9 year olds: the Transform-Us! study. BMC Public Health 2011, 11, 759. [Google Scholar] [CrossRef] [PubMed]
- Howie, E.K.; Newman-Norlund, R.D.; Pate, R.R. Smiles count but minutes matter: Responses to classroom exercise breaks. Am. J. Health Behav. 2014, 38, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.A.; Russ, L.; Vazou, S.; Goh, T.L.; Erwin, H. Integrating movement in academic classrooms: Understanding, applying and advancing the knowledge base. Obes. Rev. 2015, 16, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Pangrazi, R.P.; Beighle, A.; Pangrazi, D. Promoting Physical Activity & Health in the Classroom; Benjamin Cummings: San Francisco, CA, USA, 2009. [Google Scholar]
- Leone, L.; Pesce, C. From Delivery to Adoption of Physical Activity Guidelines: Realist Synthesis. Int. J. Environ. Res. Public Health 2017, 14, 1193. [Google Scholar] [CrossRef]
- Wechsler, D.J.S.A. Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV); The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- St Clair-Thompson, H.L. Backwards digit recall: A measure of short-term memory or working memory? Eur. J. Cogn. Psychol. 2010, 22, 286–296. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. Gen. 1992, 121, 15–23. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Med. Rev. 2010, 14, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Reinert, K.R.; Po’e, E.K.; Barkin, S.L. The relationship between executive function and obesity in children and adolescents: A systematic literature review. J. Obes. 2013, 2013, 820956. [Google Scholar] [CrossRef] [PubMed]
- Riggs, N.R.; Spruijt-Metz, D.; Sakuma, K.L.; Chou, C.P.; Pentz, M.A. Executive cognitive function and food intake in children. J. Nutr. Educ. Behav. 2010, 42, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Ridgers, N.D.; Salmon, J.; Ridley, K.; O’Connell, E.; Arundell, L.; Timperio, A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int. J. Behav. Nutr. Phys. Activity 2012, 9, 15. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
Socio-Economic Characteristics | Father/Guardian n (%) | Mother/Guardian n (%) |
---|---|---|
n | 145 | 149 |
Country of Origin | ||
Australia | 95 (65.5) | 103 (72.0) |
Asia | 23 (15.9) | 28 (19.6) |
Europe | 18 (12.4) | 7 (4.9) |
Other a | 9 (6.2) | 5 (3.5) |
Education | ||
Primary school | - | 1 (0.7) |
Some high school | 1 (0.7) | 3 (2.0) |
Completed high school | 11 (7.7) | 11 (7.5) |
Technical/trade certificate/apprenticeship | 16 (11.2) | 8 (5.4) |
University or tertiary education | 114 (79.7) | 124 (84.4) |
Not applicable | 1 (0.7) | - |
Employment status b | ||
Employed full time | 119 (82.6) | 38 (25.2) |
Employed part time | 13 (9.0) | 72 (47.7) |
Unemployed or unpaid | 5 (3.5) | 7 (4.6) |
Home-duties full time | 1 (0.7) | 25 (16.6) |
Student | - | 6 (4.0) |
Not applicable | 2 (1.4) | 1 (0.7) |
Other c | 4 (2.8) | 2 (1.3) |
Combined income | ||
<AUD 30,000 | 4 (2.9) | |
AUD 30,000–59,000 | 12 (8.8) | |
AUD 60,000–119,000 | 18 (13.2) | |
AUD 120,000–180,000 | 50 (36.8) | |
>AUD 180,000 | 52 (38.2) |
Children’s Data | n | Mean ± SD |
---|---|---|
Daily class time sitting (min) | 145 | 181.89 ± 25.29 |
Daily class time stepping (min) | 145 | 29.37 ± 8.60 |
Daily class time sit-to-stand (freq.) | 145 | 39.94 ± 8.94 |
Response inhibition | ||
Response time (ms) | 145 | 417.10 ± 38.01 |
Accuracy (percentage) | 145 | 74.32 ± 13.90 |
Lapses of attention—τ (ms) | 145 | 56.83 ± 18.09 |
Working memory (standardised test score) | 79 | 88.39 ± 11.96 |
Brain activity | ||
O2Hb a (µmol/L) | 71 | 1.60 × 10−7 ± 6.25 × 10−7 |
HHb b (µmol/L) | 71 | −6.01 × 10−8 ± 2.68 × 10−7 |
Outcome Variables | Independent Variables | ||
---|---|---|---|
Daily Sitting Time (Min) | Daily Stepping Time (Min) | Daily Sit-to-Stand Transitions (Freq.) | |
Cognitive functions | |||
Inhibition accuracy | |||
β 95% CI | 0.03 (−0.57, 0.12) | −0.30 * (−0.56, −0.04) | −0.26 * (−0.52, −0.01) |
Residuals ICC ICC 95% CI | 7.03 × 10−15 (7.03 × 10−15, 7.03 × 10−15) | 1.46 × 10−21 (1.46 × 10−21, 1.46 × 10−21) | 2.76 × 10−15 (2.76 × 10−15, 2.76 × 10−15) |
Inhibition response time | |||
β 95% CI | 0.03 (−0.21, 0.28) | −0.95 ** (−1.66, −0.26) | −0.41 (−1.12, 0.30) |
Residuals ICC ICC 95% CI | 1.41 × 10−16 (1.41 × 10−16, 1.41 × 10−16) | 7.81 × 10−26 (7.81 × 10−26, 7.81 × 10−26) | 4.45 × 10−20 (4.45 × 10−20, 4.45 × 10−20) |
Lapses of attention (τ) | |||
β 95% CI | 0.12 * (0.01, 0.23) | −0.17 (−0.51, 0.18) | −0.18 (−0.51, 0.15) |
Residuals ICC ICC 95% CI | 0.005 (3.30 × 10−10, 0.999) | 0.028 (0.001, 0.489) | 0.036 (0.002, 0.382) |
Working memory | |||
β 95% CI | 0.01 (−0.09, 0.11) | −0.06 (−0.35, 0.23) | −0.08 (−0.41, 0.24) |
Residuals ICC ICC 95% CI | 1.68 × 10−20 (1.68 × 10−20, 1.68 × 10−20) | 1.41 × 10−19 (1.41 × 10−19, 1.41 × 10−19) | 2.63 × 10−20 (2.63 × 10−20, 2.63 × 10−20) |
Brain activity | |||
O2Hb a | |||
β 95% CI | 1.38 × 10−9 (−3.80 × 10−9, 6.56 × 10−9) | 3.24 × 10−9 (−1.29 × 10−8, 1.93 × 10−8) | −9.36 × 10−9 (−2.50 × 10−8, 6.24 × 10−9) |
Residuals ICC ICC 95% CI | 3.81 × 10−24 (3.81 × 10−24, 3.81 × 10−24) | 3.97 × 10−16 (3.97 × 10−16, 3.97 × 10−16) | 2.79 × 10−15 (2.79 × 10−15, 2.79 × 10−15) |
HHb b | |||
β 95% CI | −1.03 × 10−9 (−3.28 × 10−9, 1.23 × 10−9) | 2.89 × 10−9 (−4.78 × 10−9, 1.06 × 10−8) | 6.40 × 10−9 (−5.98 × 10−11, 1.29 × 10−8) |
Residuals ICC ICC 95% CI | 0.158 (0.025, 0.580) | 0.154 (0.024, 0.576) | 0.140 (0.019, 0.578) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzoli, E.; Teo, W.-P.; Salmon, J.; Pesce, C.; He, J.; Ben-Soussan, T.D.; Barnett, L.M. Associations of Class-Time Sitting, Stepping and Sit-to-Stand Transitions with Cognitive Functions and Brain Activity in Children. Int. J. Environ. Res. Public Health 2019, 16, 1482. https://doi.org/10.3390/ijerph16091482
Mazzoli E, Teo W-P, Salmon J, Pesce C, He J, Ben-Soussan TD, Barnett LM. Associations of Class-Time Sitting, Stepping and Sit-to-Stand Transitions with Cognitive Functions and Brain Activity in Children. International Journal of Environmental Research and Public Health. 2019; 16(9):1482. https://doi.org/10.3390/ijerph16091482
Chicago/Turabian StyleMazzoli, Emiliano, Wei-Peng Teo, Jo Salmon, Caterina Pesce, Jason He, Tal Dotan Ben-Soussan, and Lisa M. Barnett. 2019. "Associations of Class-Time Sitting, Stepping and Sit-to-Stand Transitions with Cognitive Functions and Brain Activity in Children" International Journal of Environmental Research and Public Health 16, no. 9: 1482. https://doi.org/10.3390/ijerph16091482
APA StyleMazzoli, E., Teo, W. -P., Salmon, J., Pesce, C., He, J., Ben-Soussan, T. D., & Barnett, L. M. (2019). Associations of Class-Time Sitting, Stepping and Sit-to-Stand Transitions with Cognitive Functions and Brain Activity in Children. International Journal of Environmental Research and Public Health, 16(9), 1482. https://doi.org/10.3390/ijerph16091482