SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydraulic Conductivity Tests
2.3. Batch Sorption Tests
2.4. Solute Transport Equation
3. Results and Discussion
3.1. Hydraulic Conductivity Results
3.2. Sorption Isotherm Results
3.3. Solute Transport Modeling
4. Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, H.D.; Reddy, K.R. Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Shackelford, C.D.; Jefferis, S.A. Geoenvironmental engineering for in situ remediation. In Proceedings of the International Conference on Geotechnical and Geoenvironmental Engineering, Melbourne, Australia, 19–24 November 2000; Available online: https://www.onepetro.org/conference-paper/ISRM-IS-2000-003 (accessed on 17 September 2019).
- Li, Y.C.; Cleall, P.J.; Wen, Y.D.; Chen, Y.M.; Pan, Q. Stresses in soil-bentonite slurry trench cutoff walls. Géotechnique 2015, 65, 843–850. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chen, G.U.; Lou, X.H. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure. Chin. J. Geotech. Eng. 2017, 39, 1915–1921. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201710028.htm (accessed on 16 November 2019). (In Chinese).
- Malusis, M.A.; McKeehan, M.D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite. J. Geotech. Geoenviron. Eng. 2013, 139, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Bohnhoff, G.L.; Shackelford, C.D. Hydraulic conductivity of polymerized bentonite-amended backfills. J. Geotech. Geoenviron. Eng. 2014, 140, 04013028. [Google Scholar] [CrossRef]
- Du, Y.J.; Fan, R.D.; Liu, S.Y.; Reddy, K.R.; Jin, F. Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls. Eng. Geol. 2015, 195, 258–268. [Google Scholar] [CrossRef]
- Hong, C.S.; Shackelford, C.D.; Malusis, M.A. Adsorptive behavior of zeolite-amended backfills for enhanced metals containment. J. Geotech. Geoenviron. Eng. 2016, 142, 04016021. [Google Scholar] [CrossRef]
- Malusis, M.A.; Maneval, J.E.; Barben, E.J.; Shackelford, C.D.; Daniels, E.R. Influence of adsorption on phenol transport through soil–bentonite vertical barriers amended with activated carbon. J. Contam. Hydrol. 2010, 116, 58–72. [Google Scholar] [CrossRef]
- Khandelwal, A.; Rabideau, A.J. Enhancement of soil-bentonite barrier performance with the addition of natural humus. J. Contam. Hydrol. 2000, 45, 267–282. [Google Scholar] [CrossRef]
- Du, Y.J.; Fan, R.D.; Liu, S.Y.; Reddy, K.R.; Jin, F. Impacts of presence of lead contamination in clayey soil–calcium bentonite cutoff wall backfills. Appl. Clay Sci. 2015, 108, 111–122. [Google Scholar] [CrossRef]
- Du, Y.J.; Yang, Y.L.; Fan, R.D.; Wang, F. Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills. KSCE J. Civ. Eng. 2016, 20, 670–678. [Google Scholar] [CrossRef]
- Fan, R.D.; Liu, S.Y.; Du, Y.J.; Reddy, K.R.; Yang, Y.L. Impacts of presence of lead contamination on settling behavior and microstructure of clayey soil-calcium bentonite blends. Appl. Clay Sci. 2017, 142, 109–119. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Unuabonah, I.E.; Olu-owolabi, B.I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 2006, 134, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Ma, M. The dispersive effect of sodium hexametaphosphate on kaolinite in saline water. Clays Clay Miner. 2012, 60, 405–410. [Google Scholar] [CrossRef]
- Deng, A.; McBride, L. Hydraulic conductivity of Hindmarsh clay amended by polymeric additive. In Proceedings of the 7th International Congress on Environmental Geotechnics (ICEG 2014), Melbourne, Australia, 10–14 November 2014; Available online: https://search.informit.com.au/documentSummary;dn=984538751480976;res=IELENG (accessed on 5 November 2019).
- Yang, Y.L.; Du, Y.J.; Reddy, K.R.; Fan, R.D. Phosphate-amended sand/Ca-bentonite mixtures as slurry trench wall backfills: Assessment of workability, compressibility and hydraulic conductivity. Appl. Clay Sci. 2017, 142, 120–127. [Google Scholar] [CrossRef]
- Yang, Y.L.; Reddy, K.R.; Du, Y.J.; Fan, R.D. Short-term hydraulic conductivity and consolidation properties of soil-bentonite backfills exposed to CCR-impacted groundwater. J. Geotech. Geoenviron. Eng. 2018, 144, 04018025. [Google Scholar] [CrossRef]
- Yang, Z.P.; Lu, W.X.; Long, Y.Q.; Bao, X.H.; Yang, Q.C. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Yang, Z.P.; Ge, H.K.; Lu, W.X.; Long, Y.Q. Assessment of heavy metals contamination in near-surface dust. Pol. J. Environ. Stud. 2015, 24, 1817–1829. [Google Scholar] [CrossRef]
- Xia, W.Y.; Du, Y.J.; Li, F.S.; Li, C.P.; Yan, X.L.; Arulrajah, A.; Wang, F.; Song, D.J. In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder. J. Hazard. Mater. 2019, 369, 353–361. [Google Scholar] [CrossRef]
- Xia, W.Y.; Du, Y.J.; Li, F.S.; Guo, G.L.; Yan, X.L.; Li, C.P.; Arulrajah, A.; Wang, F.; Wang, S. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter. Constr. Build. Mater. 2019, 210, 278–288. [Google Scholar] [CrossRef]
- Yang, Y.L.; Reddy, K.R.; Du, Y.J.; Fan, R.D. Retention of Pb and Cr (VI) onto slurry trench vertical cutoff wall backfill containing phosphate dispersant amended Ca-bentonite. Appl. Clay Sci. 2019, 168, 355–365. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Slump of Hydraulic-Cement Concrete; C143/C143M; ASTM: West Conshohocken, PA, USA, 2012; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- Evans, J.C. Vertical cutoff walls. In Geotechnical Practice for Waste Disposal; Daniel, D.E., Ed.; Chapman & Hall: London, UK, 1993; pp. 430–454. Available online: https://link.springer.xilesou.top/chapter/10.1007/978-1-4615-3070-1_17 (accessed on 11 November 2019).
- ASTM. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter; D5084; ASTM: West Conshohocken, PA, USA, 2010; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- Malusis, M.A.; Barben, E.J.; Evans, J.C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon. J. Geotech. Geoenviron. Eng. 2009, 135, 664–672. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for pH of Aqueous Solutions with the Glass Electrode; ASTM E70-07; ASTM: West Conshohocken, PA, USA, 2015; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- ASTM. Standard Test Method for Electrical Conductivity and Resistivity of Water; ASTM D1125-14; ASTM: West Conshohocken, PA, USA, 2014; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- ASTM. Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments; ASTM D4646-03; ASTM: West Conshohocken, PA, USA, 2008; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Removal of heavy metals from urban stormwater runoff using different filter materials. J. Environ. Chem. Eng. 2014, 2, 282–292. [Google Scholar] [CrossRef]
- US EPA. SW-846 Test Method 7000B: Flame Atomic Absorption Spectrophotometry; United States Environmental Protection Agency (US EPA): Washington, DC, USA, 2007. Available online: https://www.epa.gov/hw-sw846/sw-846-compendium (accessed on 10 November 2019).
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. Available online: https://pubs.acs.org/doi/abs/10.1021/ja02268a002 (accessed on 15 September 2019). [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Shackelford, C.D. Contaminant transport. In Geotechnical Practice for Waste Disposal; Daniel, D.E., Ed.; Chapman and Hal: London, UK, 1993; pp. 33–65. Available online: https://link.springer.xilesou.top/chapter/10.1007/978-1-4615-3070-1_3 (accessed on 17 September 2019).
- ASTM. Standard Test Methods for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions; D7100; ASTM: West Conshohocken, PA, USA, 2011; Available online: http://compass.astm.org/ (accessed on 15 November 2019).
- Gleason, M.H.; Daniel, D.E.; Eykholt, R. Calcium and sodium bentonite for hydraulic containment applications. J. Geotech. Geoenviron. Eng. 1997, 123, 438–445. [Google Scholar] [CrossRef]
- Yang, Y.L.; Reddy, K.R.; Du, Y.J.; Fan, R.D. SHMP amended calcium bentonite for slurry trench cutoff walls: Workability and microstructure characteristics. Can. Geotech. J. 2018, 55, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Shackelford, C.D.; Daniel, D.E. Diffusion in saturated soil. I: Background. J. Geotech. Eng. 1991, 117, 467–484. [Google Scholar] [CrossRef]
- Kamon, M.; Inui, T.; Katsumi, T. Environmental risk assessment of a containment disposal facility at a contaminated site. In Proceedings of the 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Singapore, 4–8 August 2003. [Google Scholar]
- Neville, C.J.; Andrews, C.B. Containment criterion for contaminant isolation by cutoff walls. Ground Water 2006, 44, 682–686. [Google Scholar] [CrossRef]
- Shackelford, C.D. Critical concepts for column testing. J. Geotech. Eng. 1994, 120, 1804–1828. [Google Scholar] [CrossRef]
- Li, L.Y.; Li, F. Heavy metal sorption and hydraulic conductivity studies using three types of bentonite admixes. J. Environ. Eng. 2001, 127, 420–429. [Google Scholar] [CrossRef]
- Zhang, W.J.; Qiu, Q.W. Analysis on contaminant migration through vertical barrier walls in a landfill in China. Environ. Earth Sci. 2010, 61, 847–852. [Google Scholar] [CrossRef]
- Hong, C.S.; Shackelford, C.D. Characterizing zeolite-amended soil-bentonite backfill for enhanced metals containment with vertical cutoff walls. In Geoenvironmental Engineering; Honoring David, E., Daniel Benson, C.H., Shackelford, C.D., Eds.; American Society of Civil Engineers Reston: Reston, VA, USA, 2016; pp. 82–98. Available online: https://ascelibrary.org/doi/pdf/10.1061/9780784480175.007 (accessed on 5 November 2019).
- Wang, Y.Z.; Chen, Y.M.; Xie, H.J.; Zhang, C.; Zhan, L. Lead adsorption and transport in loess-amended soil-bentonite cut-off wall. Eng. Geol. 2016, 215, 69–80. [Google Scholar] [CrossRef]
- AQSIQ (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China); SAC (Standardization Administration of the People’s Republic of China). Groundwater Quality Standards; GB/T 14848–2017; Standards Press of China: Beijing, China, 2017; Available online: https://wenku.baidu.com/view/3899016c0640be1e650e52ea551810a6f424c857.html (accessed on 12 November 2019). (In Chinese)
- Evans, J.C.; Yang, Y.L.; Ruffing, D.G. Vane shear tests to evaluate in situ stress state of a soil-bentonite slurry trench wall. In Proceedings of the International Congress on Environmental Geotechnics, Hangzhou, China, 28 October–1 November 2018; Available online: https://link.springer.xilesou.top/chapter/10.1007/978-981-13-2224-2_46 (accessed on 5 November 2019).
Sample ID | Hydraulic Conductivity, k (m/s) | Hydraulic Gradient, i | Porosity, n | Seepage Velocity, v (m/s) | Specimen Height, L (m) | Dry Density, ρd (g/cm3) |
---|---|---|---|---|---|---|
20CaB-1 | 2.3 × 10−9 | 26 | 0.413 | 1.47 × 10−7 | 0.0785 | 1.60 |
20CaB-2 | 3.5 × 10−9 | 26 | 0.384 | 2.37 × 10−7 | 0.0693 | 1.68 |
SHMP-20CaB-1 | 1.7 × 10−10 | 26 | 0.371 | 1.16 × 10−8 | 0.0733 | 1.68 |
SHMP-20CaB-2 | 1.6 × 10−10 | 26 | 0.390 | 1.09 × 10−8 | 0.0753 | 1.64 |
Type of Backfill | Langmuir Parameters | |||
qm,L (mg/kg) | KL (L/mg) | r2 | ||
20CaB | 26,044 | 0.146 | 0.912 | |
SHMP-20CaB | 44,824 | 0.0103 | 0.939 | |
Freundlich Parameters | Kp at Ce = 1000 mg/L | |||
KF (L/kg) | nF | r2 | ||
20CaB | 4602 | 5.31 | 0.913 | 16.9 |
SHMP-20CaB | 4070 | 3.94 | 0.921 | 23.5 |
Type of Backfill | Rd | τ | D0 (m2∙s) | αL (m) | D (m2∙s) |
---|---|---|---|---|---|
20CaB-1 | 66.47 | 0.18 | 9.25 × 10−10 | 0.01 | 1.64 × 10−9 |
20CaB-2 | 74.94 | 0.18 | 9.25 × 10−10 | 0.01 | 2.54 × 10−9 |
SHMP-20CaB-1 | 107.42 | 0.18 | 9.25 × 10−10 | 0.01 | 2.83 × 10−10 |
SHMP-20CaB-2 | 99.82 | 0.18 | 9.25 × 10−10 | 0.01 | 2.76 × 10−10 |
Breakthrough Time, tB,i (yrs) | Unamended Backfill | Amended Backfill | tB Ratio a, tB,amended/unamended | ||||
---|---|---|---|---|---|---|---|
20CaB-1 | 20CaB-2 | Average | SHMP-20CaB-1 | SHMP-20CaB-2 | Average | ||
Non-sorptive | |||||||
tB,III | 0.12 | 0.07 | 0.09 | 1.08 | 1.13 | 1.11 | 12 |
tB,IV | 0.12 | 0.08 | 0.10 | 1.21 | 1.27 | 1.24 | 12 |
tB,0.05 | 0.17 | 0.10 | 0.14 | 1.86 | 1.97 | 1.92 | 14 |
tB,0.1 | 0.18 | 0.11 | 0.14 | 2.02 | 2.13 | 2.08 | 15 |
tB,0.5 | 0.21 | 0.13 | 0.17 | 2.67 | 2.84 | 2.76 | 16 |
Sorptive | |||||||
tB,III | 7.59 | 5.38 | 6.48 | 116.24 | 113.08 | 114.66 | 18 |
tB,IV | 8.21 | 5.80 | 7.01 | 129.66 | 126.35 | 128.00 | 18 |
tB,0.05 | 11.11 | 7.81 | 9.46 | 200.26 | 196.58 | 198.42 | 21 |
tB,0.1 | 11.72 | 8.23 | 9.98 | 216.63 | 212.94 | 214.79 | 22 |
tB,0.5 | 14.18 | 9.92 | 12.05 | 286.68 | 283.25 | 284.97 | 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-L.; Reddy, K.R.; Zhang, W.-J.; Fan, R.-D.; Du, Y.-J. SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater. Int. J. Environ. Res. Public Health 2020, 17, 370. https://doi.org/10.3390/ijerph17010370
Yang Y-L, Reddy KR, Zhang W-J, Fan R-D, Du Y-J. SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater. International Journal of Environmental Research and Public Health. 2020; 17(1):370. https://doi.org/10.3390/ijerph17010370
Chicago/Turabian StyleYang, Yu-Ling, Krishna R. Reddy, Wen-Jie Zhang, Ri-Dong Fan, and Yan-Jun Du. 2020. "SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater" International Journal of Environmental Research and Public Health 17, no. 1: 370. https://doi.org/10.3390/ijerph17010370
APA StyleYang, Y. -L., Reddy, K. R., Zhang, W. -J., Fan, R. -D., & Du, Y. -J. (2020). SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater. International Journal of Environmental Research and Public Health, 17(1), 370. https://doi.org/10.3390/ijerph17010370