Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Association, A.L.; American Lung Association. LUNG FORCE “State of Lung Cancer”. Available online: https://wwwlungorg/our-initiatives/research/monitoring-trends-in-lung-disease/state-of-lung-cancer/states/ (accessed on 2 June 2019).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Mokdad, A.H.; Dwyer-Lindgren, L.; Fitzmaurice, C.; Stubbs, R.W.; Bertozzi-Villa, A.; Morozoff, C.; Charara, R.; Allen, C.; Naghavi, M.; Murray, C.J.L. Trends and Patterns of Disparities in Cancer Mortality Among US Counties. J. Am. Med. Assoc. 2017, 317, 388–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, Z. Trends and Patterns of Disparities in Tracheal, Bronchus, and Lung Cancer Mortality Among US Counties, 1980–2014. J. Thorac. Oncol. 2017, 12, S1558. [Google Scholar] [CrossRef]
- Howington, J.A.; Blum, M.G.; Chang, A.C.; Balekian, A.A.; Murthy, S.C. Treatment of Stage I and II Non-Small Cell Lung Cancer: Diagnosis and Management of Lung Cancer, diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e278S–e313S. [Google Scholar] [CrossRef]
- Aberle, D.R. Implementing lung cancer screening: The US experience. Clin. Radiol. 2017, 72, 401–406. [Google Scholar] [CrossRef]
- Moyer, V.A.; Force UPST. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2014, 160, 330–338. [Google Scholar] [CrossRef] [Green Version]
- CMS. Medicare Coverage of Screening for Lung Cancer with Low Dose Computed Tomography (LDCT). Centers for Medicare & Medicaid Services MLN Matters® Number: MM9246. Available online: https://wwwcmsgov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNMattersArticles/Downloads/MM9246pdf (accessed on 15 April 2018).
- CMS. Decision Memo for Screening for Lung Cancer with Low Dose Computed Tomography (LDCT) (CAG-00439N). Centers for Medicare and Medicaid Services. Available online: https://wwwcmsgov/medicare-coverage-database/details/nca-decision-memoaspx?NCAId=274 (accessed on 15 April 2018).
- Jemal, A.; Fedewa, S.A. Lung Cancer Screening with Low-Dose Computed Tomography in the United States-2010 to 2015. JAMA Oncol. 2017, 3, 1278–1281. [Google Scholar] [CrossRef]
- Nishi, S.; Zhou, J.; Kuo, Y.F.; Goodwin, J.S. Use of Lung Cancer Screening With Low-Dose Computed Tomography in the Medicare Population. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Zahnd, W.E.; Eberth, J.M. Lung Cancer Screening Utilization: A Behavioral Risk Factor Surveillance System Analysis. Am. J. Prev. Med. 2019, 57, 250–255. [Google Scholar] [CrossRef]
- Eberth, J.M.; Bozorgi, P.; Lebron, L.M.; Bills, S.E.; Hazlett, L.J.; Carlos, R.C.; King, J.C. Geographic Availability of Low-Dose Computed Tomography for Lung Cancer Screening in the United States, 2017. Prev. Chronic Dis. 2018, 15, E119. [Google Scholar] [CrossRef] [Green Version]
- Eberth, J.M.; Qiu, R.; Adams, S.A.; Salloum, R.G.; Bell, N.; Arrington, A.K.; Linder, S.K.; Munden, R.F. Lung cancer screening using low-dose CT: The current national landscape. Lung Cancer 2014, 85, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kale, M.S.; Wisnivesky, J.; Taioli, E.; Liu, B. The Landscape of US Lung Cancer Screening Services. Chest 2019, 155, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Dharmarajan, K.; Henschke, C.I.; Taioli, E. State-Level Variations in the Utilization of Lung Cancer Screening Among Medicare Fee-for-Service Beneficiaries: An Analysis of the 2015 to 2017 Physician and Other Supplier Data. Chest 2019, 157, 1012–1020. [Google Scholar] [CrossRef]
- Charkhchi, P.; Kolenic, G.E.; Carlos, R.C. Access to Lung Cancer Screening Services: Preliminary Analysis of Geographic Service Distribution Using the ACR Lung Cancer Screening Registry. J. Am. Coll. Radiol. 2017, 14, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- CMS. Medicare Provider Utilization and Payment Data: Physician and Other Supplier. Available online: https://wwwcmsgov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplierhtml (accessed on 30 May 2018).
- SEER. Cancer Stat Facts: Lung and Bronchus Cancer. The Surveillance, Epidemiology, and End Results (SEER) Program, the National Cancer Institute. 2020. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 27 April 2020).
- Manson, S.; Schroeder, J.; Riper, D.; Ruggles, S. IPUMS National Historical Geographic Information System: Version 13.0 [Database]; University of Minnesota: Minneapolis, MN, USA, 2018. Available online: http://doi.org/10.18128/D050.V13.0 (accessed on 15 June 2019).
- CMS. The Geographic Variation Public Use File. Available online: https://wwwcmsgov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Geographic-Variation/GV_PUFhtml (accessed on 30 May 2019).
- Dwyer-Lindgren, L.; Mokdad, A.H.; Srebotnjak, T.; Flaxman, A.D.; Hansen, G.M.; Murray, C.J. Cigarette smoking prevalence in US counties: 1996–2012. Popul. Health Metr. 2014, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- CDC. Behavioral Risk Factor Surveillance System Survey Data; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA. Available online: https://wwwcdcgov/brfss/indexhtml (accessed on 22 March 2020).
- Edwards, S.T.; Prentice, J.C.; Simon, S.R.; Pizer, S.D. Home-based primary care and the risk of ambulatory care-sensitive condition hospitalization among older veterans with diabetes mellitus. JAMA Intern. Med. 2014, 174, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.; Ritchie, C.; Camacho, F.; Leff, B. Geographic Concentration of Home-Based Medical Care Providers. Health Aff. 2016, 35, 1404–1409. [Google Scholar] [CrossRef]
- Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods. Rev. Reg. Stud. 2007, 37, 5–27. [Google Scholar]
- Kelsey, J.; Joris, V.B.; Jacob, W.; James, M.; Martin, F.; Jeffrey, G.; Jeff, T.; Matthew, P.; Carson, F.; Geir, A.H.; et al. Geopandas. Available online: https://zenodo.org/record/3669853 (accessed on 15 June 2019).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Anaconda. Anaconda Software Distribution. Computer Software. Version. 2-2.4.0. Available online: https://www.anaconda.com/ (accessed on 15 June 2019).
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.E.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks-a Publishing Format for Reproducible Computational Workflows. 2016. Available online: https://eprints.soton.ac.uk/403913/ (accessed on 15 June 2019).
- Gillies, S.; Bierbau, A.; Lautaportti, K.; Tonnhofer, O. Shapely: Manipulation and Analysis of Geometric Objects. Available online: github.com/Toblerity/Shapely (accessed on 15 June 2019).
- McKinney, W. Data Structures for Statistical Computing in Python. In 9th Python in Science Conference; AQR Capital Management, LLC: Greenwich, CT, USA, 2010; pp. 51–56. [Google Scholar]
- Walt, S.V.D.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Pérez, F.; Granger, B.E. IPython: A System for Interactive Scientific Computing. Comput. Sci. Eng. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Rossum, G.V. Python Tutorial, Technical Report CS-R9526; Centrum voor Wiskunde en Informatica (CWI): Amsterdam, The Netherlands, 1995; Available online: http://www.python.org/guido/Publications.html (accessed on 15 June 2019).
- Sarkar, D.; Andrews, F. latticeExtra: Extra Graphical Utilities Based on Lattice. R Package Version 0.6-28. Available online: https://CRAN.R-project.org/package=latticeExtra (accessed on 15 March 2020).
- Tennekes, M. tmap: Thematic Maps in R. J. Stat. Softw. 2018, 84, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Bivand, R. classInt: Choose Univariate Class Intervals. R Package Version 0.4-2. Available online: https://CRAN.R-project.org/package=classInt (accessed on 15 March 2020).
- Wright, K. Pals: Color Palettes, Colormaps, and Tools to Evaluate Them. R Package Version 1.6. Available online: https://CRAN.R-project.org/package=pals (accessed on 15 March 2020).
- Wickham, H.; François, R.; Henry, L.; Kuhn, M. Dplyr: A Grammar of Data Manipulation. R Package Version 0.8.3. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 March 2020).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Walker, K. Tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. R Package Version 0.9.6. Available online: https://CRAN.R-project.org/package=tidycensus (accessed on 15 March 2020).
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA; Available online: http://www.rstudio.com/ (accessed on 15 March 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 15 March 2020).
- Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. R Package Version 0.2.4. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 15 March 2020).
- Pastorino, U.; Rossi, M.; Rosato, V.; Marchiano, A.; Sverzellati, N.; Morosi, C.; Fabbri, A.; Galeone, C.; Negri, E.; Sozzi, G.; et al. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur. J. Cancer Prev. 2012, 21, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Leadbetter, S.; Richards, T.; Sabatino, S.A. Contextual analysis of breast and cervical cancer screening and factors associated with health care access among United States women, 2002. Soc. Sci. Med. 2008, 66, 260–275. [Google Scholar] [CrossRef]
- Feng, X.; Tan, X.; Alenzi, E.O.; Rai, P.; Chang, W. Spatial and temporal variations of screening for breast and colorectal cancer in the United States, 2008 to 2012. Medicine 2016, 95, e5656. [Google Scholar] [CrossRef]
- Peipins, L.A.; Miller, J.; Richards, T.B.; Bobo, J.K.; Liu, T.; White, M.C.; Joseph, D.; Tangka, F.; Ekwueme, D.U. Characteristics of US Counties with No Mammography Capacity. J. Commun. Health 2012, 37, 1239–1248. [Google Scholar] [CrossRef] [Green Version]
- James, C.V.; Moonesinghe, R.; Wilson-Frederick, S.M.; Hall, J.E.; Penman-Aguilar, A.; Bouye, K. Racial/Ethnic Health Disparities Among Rural Adults-United States, 2012–2015. J. Health Care Poor Underserved 2018, 29, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, Z.; Zhang, X.; Richards, T.B.; Nadel, M.; Peipins, L.A.; Holt, J. Multilevel Small-Area Estimation of Colorectal Cancer Screening in the United States. Cancer Epidemiol. Biomark. Prev. 2018, 27, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Zandbergen, P.A.; Chakraborty, J. Improving environmental exposure analysis using cumulative distribution functions and individual geocoding. Int. J. Health Geogr. 2006, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Fox, E.H.; Ulmer, J.M.; Chapman, J.E.; Kershaw, S.E.; Sallis, J.F.; Conway, T.L.; Cerin, E.; Cain, K.L.; Adams, M.A.; et al. International comparison of observation-specific spatial buffers: Maximizing the ability to estimate physical activity. Int. J. Health Geogr. 2017, 16, 4. [Google Scholar] [CrossRef] [PubMed]
Variables | LDCT Provider Density (Provider per 1000 Medicare FFS Beneficiaries) | Current Daily Cigarette Smoking Prevalence (%) | County |
---|---|---|---|
Top-ten LDCT provider density | 129.7 | 13.0 | Essex County, Massachusetts |
138.1 | 10.1 | Hudson County, New Jersey | |
140.3 | 16.7 | Philadelphia County, Pennsylvania | |
153.4 | 11.0 | Norfolk County, Massachusetts | |
156.9 | 18.2 | Wayne County, Michigan | |
188.5 | 11.2 | Middlesex County, Massachusetts | |
194.3 | 10.9 | Kings County, New York | |
201.4 | 9.9 | Queens County, New York | |
249.2 | 12.1 | Bronx County, New York | |
308.8 | 12.6 | Suffolk County, Massachusetts | |
Bottom-ten provider density | 0.032 | 13.5 | Yakima County, Washington |
0.043 | 9.6 | Imperial County, California | |
0.044 | 16.7 | Clallam County, Washington | |
0.059 | 13.1 | Tippecanoe County, Indiana | |
0.060 | 17.3 | Lackawanna County, Pennsylvania | |
0.074 | 13.3 | Monroe County, Florida | |
0.084 | 19.2 | Polk County, Texas | |
0.098 | 15.6 | Okaloosa County, Florida | |
0.123 | 19.5 | Knox County, Illinois | |
0.134 | 24.1 | Sequoyah County, Oklahoma | |
Top-ten smoking prevalence | 1.6 | 27.6 | Boone County, West Virginia |
4.0 | 27.7 | Jackson County, Kentucky | |
not available | 27.8 | Lee County, Kentucky | |
not available | 27.8 | Leslie County, Kentucky | |
0.4 | 27.8 | Roane County, West Virginia | |
not available | 28.0 | McDowell County, West Virginia | |
7.6 | 28.9 | Elliott County, Kentucky | |
2.8 | 28.9 | Knox County, Kentucky | |
not available | 29.8 | Northwest Arctic Borough, Alaska | |
3.1 | 30.7 | Clay County, Kentucky | |
Bottom-ten smoking prevalence | not available | 5.7 | Utah County, Utah |
64.1 | 6.4 | Arlington County, Virginia | |
not available | 7.0 | Summit County, Utah | |
not available | 7.0 | Wasatch County, Utah | |
14.2 | 7.1 | Santa Clara County, California | |
63.9 | 7.2 | Montgomery County, Maryland | |
not available | 7.2 | Davis County, Utah | |
14.4 | 7.4 | San Mateo County, California | |
33.2 | 7.4 | Loudoun County, Virginia | |
68.6 | 7.5 | Howard County, Maryland |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Sze, J.; Li, L.; Ornstein, K.A.; Taioli, E. Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties. Int. J. Environ. Res. Public Health 2020, 17, 3383. https://doi.org/10.3390/ijerph17103383
Liu B, Sze J, Li L, Ornstein KA, Taioli E. Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties. International Journal of Environmental Research and Public Health. 2020; 17(10):3383. https://doi.org/10.3390/ijerph17103383
Chicago/Turabian StyleLiu, Bian, Jeremy Sze, Lihua Li, Katherine A. Ornstein, and Emanuela Taioli. 2020. "Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties" International Journal of Environmental Research and Public Health 17, no. 10: 3383. https://doi.org/10.3390/ijerph17103383
APA StyleLiu, B., Sze, J., Li, L., Ornstein, K. A., & Taioli, E. (2020). Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties. International Journal of Environmental Research and Public Health, 17(10), 3383. https://doi.org/10.3390/ijerph17103383