Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comet Assay
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- ERS. Air Quality and Health; European Respiratory Society: Lausanne, Switzerland, 2010. [Google Scholar]
- Janssen, N.A.; Fischer, P.; Marra, M.; Ameling, C.; Cassee, F.R. Short-term effects of PM2.5, PM10 and PM2.5-10 on daily mortality in the Netherlands. Sci. Total Environ. 2013, 463, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Shah, A.S.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- WHO. Evolution of WHO Air Quality Guidelines: Past, Present and Future; WHO Regional Office for Europe: Copenhagen, Danmark, 2017; pp. 1–39. [Google Scholar]
- EAA. Air Quality in Europe–2019 Report; European Environment Agency, Technical report No 10/2019; Publications Office of the European Union: Luxembourg, 2019; pp. 1–99. [Google Scholar] [CrossRef]
- Sørensen, M.; Autrup, H.; Møller, P.; Hertel, O.; Jensen, S.S.; Vinzents, P.; Knudsen, L.E.; Loft, S. Linking exposure to environmental pollutants with biological effects. Mutat. Res. 2003, 544, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- IARC. Outdoor air Pollution. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Albert Thomas, France, 2016; Volume 109, pp. 1–454. [Google Scholar]
- Puett, R.C.; Hart, J.E.; Schwartz, J.; Hu, F.B.; Liese, A.D.; Laden, F. Are particulate matter exposures associated with risk of type 2 diabetes? Environ. Health Perspect. 2011, 119, 384–389. [Google Scholar] [CrossRef]
- Balti, E.V.; Echouffo-Tcheugui, J.B.; Yako, Y.Y.; Kengne, A.P. Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 161–172. [Google Scholar] [CrossRef]
- Bonassi, S.; Znaor, A.; Ceppi, M.; Lando, C.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; Ban, S.; Barale, R.; et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 2007, 28, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Bonassi, S.; Norppa, H.; Ceppi, M.; Strömberg, U.; Vermeulen, R.; Znaor, A.; Cebulska-Wasilewska, A.; Fabianova, E.; Fucic, A.; Gundy, S.; et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: Results from a pooled cohort study of 22 358 subjects in 11 countries. Carcinogenesis 2008, 29, 1178–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, M.; Ugolini, D.; Bonassi, S.; Fucic, A.; Holland, N.; Knudsen, L.E.; Srám, R.J.; Ceppi, M.; Bocchini, V.; Merlo, D.F. Children’s exposure to environmental pollutants and biomarkers of genetic damage. II. Results of a comprehensive literature search and meta-analysis. Mutat. Res. 2006, 612, 14–39. [Google Scholar] [CrossRef] [PubMed]
- Møller, P. The alkaline comet assay: Towards validation in biomonitoring of DNA damaging exposures. Basic Clin. Pharmacol. Toxicol. 2006, 98, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, H.; Speit, G. Assessment of DNA damage in peripheral blood of heavy smokers with the comet assay and the micronucleus test. Mutat. Res. 2005, 581, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Bonetta, S.; Schilirò, T.; Ceretti, E.; Feretti, D.; Covolo, L.; Vannini, S.; Villarini, M.; Moretti, M.; Verani, M.; et al. Mutagenic and genotoxic effects induced by PM(0.5) of different Italian towns in human cells and bacteria: The MAPEC_LIFE study. Environ. Pollut. 2019, 245, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Ceretti, E.; Feretti, D.; Viola, G.C.; Zerbini, I.; Limina, R.M.; Zani, C.; Capelli, M.; Lamera, R.; Donato, F.; Gelatti, U. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants. PLoS ONE 2014, 9, e96524. [Google Scholar] [CrossRef] [Green Version]
- de Brito, K.C.; de Lemos, C.T.; Rocha, J.A.; Mielli, A.C.; Matzenbacher, C.; Vargas, V.M. Comparative genotoxicity of airborne particulate matter (PM2.5) using Salmonella, plants and mammalian cells. Ecotoxicol. Environ. Saf. 2013, 94, 14–20. [Google Scholar] [CrossRef]
- Dumax-Vorzet, A.F.; Tate, M.; Walmsley, R.; Elder, R.H.; Povey, A.C. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis 2015, 30, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Lemos, A.T.; Coronas, M.V.; Rocha, J.A.; Vargas, V.M. Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities. Chemosphere 2012, 89, 1126–1134. [Google Scholar] [CrossRef]
- Szeto, Y.T.; Benzie, I.F.; Collins, A.R.; Choi, S.W.; Cheng, C.Y.; Yow, C.M.; Tse, M.M. A buccal cell model comet assay: Development and evaluation for human biomonitoring and nutritional studies. Mutat. Res. 2005, 578, 371–381. [Google Scholar] [CrossRef]
- Pacini, S.; Giovannelli, L.; Gulisano, M.; Peruzzi, B.; Polli, G.; Boddi, V.; Ruggiero, M.; Bozzo, C.; Stomeo, F.; Fenu, G.; et al. Association between atmospheric ozone levels and damage to human nasal mucosa in Florence, Italy. Environ. Mol. Mutagen. 2003, 42, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.; del Carmen López, M.; López, I.; Sánchez, I.; Fortoul, T.I.; Ostrosky-Wegman, P.; Rojas, E. DNA damage in leukocytes and buccal and nasal epithelial cells of individuals exposed to air pollution in Mexico City. Environ. Mol. Mutagen. 1997, 30, 147–152. [Google Scholar] [CrossRef]
- Dhawan, A.; Bajpayee, M.; Parmar, D. Comet assay: A reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 2009, 25, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Oscoz, A.A.; Brunborg, G.; Gaivão, I.; Giovannelli, L.; Kruszewski, M.; Smith, C.C.; Stetina, R. The comet assay: Topical issues. Mutagenesis 2008, 23, 143–151. [Google Scholar] [CrossRef]
- Burlinson, B.; Tice, R.R.; Speit, G.; Agurell, E.; Brendler-Schwaab, S.Y.; Collins, A.R.; Escobar, P.; Honma, M.; Kumaravel, T.S.; Nakajima, M.; et al. Fourth International Workgroup on Genotoxicity testing: Results of the in vivo Comet assay workgroup. Mutat. Res. 2007, 627, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, D.W.; Olive, P.L.; O’Neill, K.L. The comet assay: A comprehensive review. Mutat. Res. 1995, 339, 37–59. [Google Scholar] [CrossRef]
- Dietert, R.R.; Etzel, R.A.; Chen, D.; Halonen, M.; Holladay, S.D.; Jarabek, A.M.; Landreth, K.; Peden, D.B.; Pinkerton, K.; Smialowicz, R.J.; et al. Workshop to identify critical windows of exposure for children’s health: Immune and respiratory systems work group summary. Environ. Health Persp. 2000, 108, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Rössner, P.; Bavorova, H.; Ocadlikova, D.; Svandova, E.; Sram, R.J. Chromosomal aberrations in peripheral lymphocytes of children as biomarkers of environmental exposure and life style. Toxicol. Lett. 2002, 134, 79–85. [Google Scholar] [CrossRef]
- Chance, G.W.; Harmsen, E. Children are different: Environmental contaminants and children’s health. Can. J. Public Health 1998, 89 (Suppl. 1), S9–S13. [Google Scholar]
- WHO. Health Aspects of Air Pollution. Results from the WHO Project “Systematic Review of Health Aspects of Air Pollution in Europe”; WHO Regional Office for Europe: Copenhagen, Danmark, 2004; pp. 1–30. [Google Scholar]
- Wild, C.P.; Kleinjans, J. Children and increased susceptibility to environmental carcinogens: Evidence or empathy? Cancer Epidemiol. Biomarkers Prev. 2003, 12, 1389–1394. [Google Scholar]
- Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zeiger, E.; Knasmueller, S.; Fenech, M. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat. Res. 2008, 659, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, D.N.; Sposito, J.C.; Crispim, B.D.; Nascimento, A.V.; Grisolia, A.B. Genotoxic and mutagenic effects of passive smoking and urban air pollutants in buccal mucosa cells of children enrolled in public school. Toxicol. Mech. Methods 2017, 27, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Villarini, M.; Levorato, S.; Salvatori, T.; Ceretti, E.; Bonetta, S.; Carducci, A.; Grassi, T.; Vannini, S.; Donato, F.; Bonetta, S.; et al. Buccal micronucleus cytome assay in primary school children: A descriptive analysis of the MAPEC_LIFE multicentre cohort study. Int. J. Hyg. Environ. Health 2018, 221, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Feretti, D.; Pedrazzani, R.; Ceretti, E.; Dal Grande, M.; Zerbini, I.; Viola, G.C.V.; Gelatti, U.; Donato, F.; Zani, C. “Risk is in the air”: Polycyclic aromatic hydrocarbons, metals and mutagenicity of atmospheric particulate matter in a town of Northern Italy (Respira study). Mutat. Res. 2019, 842, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Holland, N.; Fucic, A.; Merlo, D.F.; Sram, R.; Kirsch-Volders, M. Micronuclei in neonates and children: Effects of environmental, genetic, demographic and disease variables. Mutagenesis 2011, 26, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watters, J.L.; Satia, J.A.; Kupper, L.L.; Swenberg, J.A.; Schroeder, J.C.; Switzer, B.R. Associations of antioxidant nutrients and oxidative DNA damage in healthy African-American and White adults. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1428–1436. [Google Scholar] [CrossRef] [Green Version]
- Osswald, K.; Mittas, A.; Glei, M.; Pool-Zobel, B.L. New revival of an old biomarker: Characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat. Res. 2003, 544, 321–329. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Silva da Silva, C.; Rossato, J.M.; Vaz Rocha, J.A.; Vargas, V.M. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated wi thgenetic biomonitoring in children. Mutat. Res. 2015, 778, 44–55. [Google Scholar] [CrossRef]
- Ceretti, E.; Zani, C.; Zerbini, I.; Viola, G.; Moretti, M.; Villarini, M.; Dominici, L.; Monarca, S.; Feretti, D. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants. Chemosphere 2015, 120, 221–229. [Google Scholar] [CrossRef]
- Calderon-Garcidueñas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.; Villarreal-Calderon, A. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution. Environ. Health Perspect. 1996, 104, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Garcidueñas, L.; Osnaya, N.; Rodríguez-Alcaraz, A.; Villarreal-Calderón, A. DNA damage in nasal respiratory epithelium from children exposed to urban pollution. Environ. Mol. Mutagen. 1997, 30, 11–20. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Wen-Wang, L.; Zhang, Y.J.; Rodriguez-Alcaraz, A.; Osnaya, N.; Villarreal-Calderón, A.; Santella, R.M. 8-hydroxy-2′-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ. Health Perspect. 1999, 107, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Ruchirawat, M.; Navasumrit, P.; Settachan, D.; Autrup, H. Environmental impacts on children’s health in Southeast Asia: Genotoxic compounds in urban air. Ann. N. Y. Acad. Sci. 2006, 1076, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Tuntawiroon, J.; Mahidol, C.; Navasumrit, P.; Autrup, H.; Ruchirawat, M. Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 2007, 28, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Eberwein, G.; Hölzer, J.; Gladtke, D.; Angerer, J.; Marczynski, B.; Behrendt, H.; Ring, J.; Sugiri, D.; Ranft, U. Influence of industrial sources on children’s health--hot spot studies in North Rhine Westphalia, Germany. Int. J. Hyg. Environ. Health 2007, 210, 591–599. [Google Scholar] [CrossRef]
- Sánchez-Guerra, M.; Pelallo-Martínez, N.; Díaz-Barriga, F.; Rothenberg, S.J.; Hernández-Cadena, L.; Faugeron, S.; Oropeza-Hernández, L.F.; Guaderrama-Díaz, M.; Quintanilla-Vega, B. Environmental polycyclic aromatic hydrocarbon (PAH) exposure and DNA damage in Mexican children. Mutat. Res. 2012, 742, 66–71. [Google Scholar] [CrossRef]
- Marcon, A.; Fracasso, M.E.; Marchetti, P.; Doria, D.; Girardi, P.; Guarda, L.; Pesce, G.; Pironi, V.; Ricci, P.; de Marco, R. Outdoor formaldehyde and NO2 exposures and markers of genotoxicity in children living near chipboard industries. Environ. Health Perspect. 2014, 122, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Coronas, M.V.; Rocha, J.A.; Salvadori, D.M.; Vargas, V.M. Evaluation of area contaminated by wood treatment activities: Genetic markers in the environment and in the child population. Chemosphere 2016, 144, 1207–1215. [Google Scholar] [CrossRef]
- Ceppi, M.; Biasotti, B.; Fenech, M.; Bonassi, S. Human population studies with the exfoliated buccal micronucleus assay: Statistical and epidemiological issues. Mutat. Res. 2010, 705, 11–19. [Google Scholar] [CrossRef]
- Corradi, M.; Poli, D.; Banda, I.; Bonini, S.; Mozzoni, P.; Pinelli, S.; Alinovi, R.; Andreoli, R.; Ampollini, L.; Casalini, A.; et al. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: A cross-sectional study. J. Breath Res. 2015, 9, 027101. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Riboni, N.; Carbognani, P.; Gnetti, L.; Dalcanale, E.; Ampollini, L.; Careri, M. Solid-phase microextraction coupled to gas chromatography-mass spectrometry followed by multivariate data analysis for the identification of volatile organic compounds as possible biomarkers in lung cancer tissues. J. Pharm. Biomed. Anal. 2017, 146, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, V.; Carraro, S.; Bozzetto, S.; Zanconato, S.; Baraldi, E. Exhaled biomarkers in childhood asthma: Old and new approaches. Asthma Res. Pract. 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Bannier, M.A.G.E.; Rosias, P.P.R.; Jöbsis, Q.; Dompeling, E. Exhaled Breath Condensate in Childhood Asthma: A Review and Current Perspective. Front. Pediatr. 2019, 7, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic and Indoor and Outdoor Environmental Exposure Variables | N (%) | Visual Score | Tail Intensity % | ||
---|---|---|---|---|---|
Mean ± SD | Median | Mean ± SD | Median | ||
Sex | |||||
M | 85 (55.9) | 180.4 ± 30.8 | 179.0 | 6.1 ± 4.6 | 5.8 |
F | 67 (44.1) | 184.2 ± 31.2 | 187.5 | 6.4 ± 3.9 | 7.0 |
Children’s age | |||||
3 years | 26 (17.1) | 190.8 ± 30.1 | 196.2 | 7.1 ± 3.8 | 7.5 |
4 years | 52 (34.2) | 177.7 ± 33.1 | 171.8 | 5.5 ± 4.6 | 4.4 |
5–6 years | 74 (48.7) | 182.1 ± 29.4 | 184.3 | 6.3 ± 4.2 | 6.8 |
Parents’ education (at least one parent) | |||||
Primary school or less | 16 (10.5) | 175.3 ± 28.9 | 175.4 | 5.3 ± 3.7 | 4.5 |
Secondary school | 47 (30.9) | 184.8 ± 29.1 | 187.3 | 6.8 ± 4.2 | 7.4 |
College or university | 89 (58.6) | 181.9 ± 32.3 | 179.0 | 6.0 ± 4.4 | 5.4 |
Home characteristics | |||||
Traffic in the area | |||||
Heavy | 86 (56.6) | 181.4 ± 29.3 | 182.5 | 6.0 ± 4.0 | 6.5 |
Moderate | 49 (32.2) | 185.7 ± 33.4 | 180.0 | 6.8 ± 4.8 | 7.2 |
Very light | 17 (11.2) | 175.2 ± 32.0 | 168.4 | 5.4 ± 4.4 | 4.1 |
Truck traffic in the area | |||||
Heavy | 27 (18.0) | 171.6 ± 26.5 | 164.0 | 4.7 ± 3.5 | 3.3 |
Moderate | 59 (39.3) | 180.6 ± 27.6 | 181.5 | 5.9 ± 4.1 | 6.3 |
Very light | 64 (42.7) | 188.9 ± 34.2 | 190.9 | 7.2 ± 4.6 | 7.7 |
Indoor exposure | |||||
Gas stove in home | 7 (4.6) | 172.9 ± 18.9 | 169.0 | 4.6 ± 2.8 | 4.6 |
Fireplace in home | 34 (22.4) | 177.6 ± 31.8 | 179.5 | 5.6 ± 4.0 | 5.2 |
Presence of smokers in home | 24 (15.8) | 179.2 ± 31.4 | 173.7 | 5.3 ± 4.5 | 3.7 |
School characteristics | |||||
Traffic in the area | |||||
Heavy | 87 (58.0) | 178.0 ± 29.1 | 175.1 | 5.6 ± 3.9 | 5.3 |
Moderate | 54 (36.0) | 187.0 ± 33.0 | 185.3 | 7.0 ± 4.8 | 7.2 |
Very light | 9 (6.0) | 188.4 ± 35.4 | 198.0 | 6.7 ± 4.4 | 8.7 |
Truck traffic in the area | |||||
Heavy | 26 (17.4) | 175.4 ± 28.7 | 169.7 | 4.9 ± 3.7 | 4.1 |
Moderate | 64 (43.0) | 181.1 ± 28.7 | 183.7 | 6.1 ± 4.0 | 6.5 |
Very light | 59 (39.6) | 186.4 ± 34.3 | 185.5 | 6.8 ± 4.7 | 7.4 |
Child’s habits | |||||
Plays outdoors | |||||
Less than 1 h | 66 (44.0) | 181.0 ± 31.3 | 179.2 | 6.2 ± 4.4 | 6.1 |
More than 1 h but less than 3 h | 57 (38.0) | 182.9 ± 28.9 | 187.3 | 6.3 ± 4.3 | 6.6 |
3 h or more | 27 (18.0) | 184.4 ± 35.4 | 185.1 | 6.4 ± 4.2 | 7.3 |
Staying in the kitchen while meals are cooked | |||||
Never | 19 (12.7) | 182.1 ± 30.1 | 181.5 | 5.8 ± 4.1 | 5.3 |
Sometimes | 97 (64.6) | 180.1 ± 29.5 | 180.0 | 5.9 ± 4.1 | 6.0 |
Often/always | 34 (22.7) | 186.7 ± 35.9 | 179.2 | 7.0 ± 5.1 | 6.5 |
Parents’ smoking habits | |||||
Neither parent smokers | 97 (64.2) | 183.9 ± 32.5 | 186.0 | 6.5 ± 4.4 | 7.0 |
Mother smoked during pregnancy | 32 (21.0) | 185.3 ± 23.7 | 187.4 | 6.3 ± 3.4 | 6.7 |
Mother smoker | 27 (17.8) | 178.0 ± 23.3 | 179.5 | 5.2 ± 3.4 | 4.8 |
Father smoker | 43 (28.3) | 177.7 ± 28.5 | 173.2 | 5.5 ± 4.1 | 4.6 |
Both parents smokers | 38 (25.2) | 178.6 ± 22.1 | 179.2 | 5.4 ± 3.4 | 4.7 |
Pollutant Levels in Days before Sampling | Coefficient | 95% Confidence Interval | p-Value |
---|---|---|---|
PM10 1 day | 0.035 | −0.112; 0.183 | 0.63 |
PM10 2 days | 0.008 | −0.179; 0.195 | 0.93 |
PM10 7 days | 0.085 | −0.171; 0.341 | 0.51 |
PM2.5 1 day | −0.036 | −0.211; 0.138 | 0.67 |
PM2.5 2 days | −0.053 | −0.262; 0.155 | 0.61 |
PM2.5 7 days | 0.176 | −0.166; 0.518 | 0.31 |
Benzene 1 day | −3.96 | −8.947; 1.015 | 0.11 |
Benzene 2 days | −3.89 | −9.018; 1.223 | 0.13 |
Benzene 7 days | −1.01 | −7.336; 5.310 | 0.72 |
NO2 1 day | −0.096 | −0.449; 0.257 | 0.59 |
NO2 2 days | −0.171 | −0.639; 0.297 | 0.47 |
NO2 7 days | 0.246 | −0.304; 0.797 | 0.37 |
SO2 1 day | −1.57 | −3.095; −0.045 | 0.04 |
SO2 2 days | −0.53 | −2.487; 1.418 | 0.58 |
SO2 7 days | 0.61 | −1.460; 2.684 | 0.58 |
O3 1 day | 0.27 | −0.134; 0.690 | 0.18 |
O3 2 days | 0.51 | 0.001; 1.019 | 0.05 |
O3 7 days | 0.63 | −0.215; 1.491 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zani, C.; Ceretti, E.; Zerbini, I.; Viola, G.C.V.; Donato, F.; Gelatti, U.; Feretti, D. Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. Int. J. Environ. Res. Public Health 2020, 17, 3276. https://doi.org/10.3390/ijerph17093276
Zani C, Ceretti E, Zerbini I, Viola GCV, Donato F, Gelatti U, Feretti D. Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. International Journal of Environmental Research and Public Health. 2020; 17(9):3276. https://doi.org/10.3390/ijerph17093276
Chicago/Turabian StyleZani, Claudia, Elisabetta Ceretti, Ilaria Zerbini, Gaia Claudia Viviana Viola, Francesco Donato, Umberto Gelatti, and Donatella Feretti. 2020. "Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study" International Journal of Environmental Research and Public Health 17, no. 9: 3276. https://doi.org/10.3390/ijerph17093276
APA StyleZani, C., Ceretti, E., Zerbini, I., Viola, G. C. V., Donato, F., Gelatti, U., & Feretti, D. (2020). Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. International Journal of Environmental Research and Public Health, 17(9), 3276. https://doi.org/10.3390/ijerph17093276