Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Phil. Trans. R. Soc. B 2009, 364, 867–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongen, S.V. Fluctuating asymmetry and developmental instability in evolutionary biology: Past, present and future. J. Evolut. Biol. 2006, 19, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Analyzing Fluctuating Asymmetry with Geometric Morphometrics: Concepts, Methods, and Applications. Symmetry 2015, 7, 843–934. [Google Scholar] [CrossRef] [Green Version]
- Raymond, M.; Pontier, D. Is there geographical variation in human handedness? Later. Asymmetries Body Brain Cognit. 2004, 9, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Loffing, F.; Hagemann, N. Performance differences between left- and right-sided athletes in one-on-one interactive sports. In Laterality in Sports: Theories and Applications; Academic Press: San Diego, CA, USA, 2016; pp. 249–277. [Google Scholar]
- Yarrow, K.; Brown, P.; Krakauer, J.W. Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nat. Rev. Neurosci. 2009, 10, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorer, J.; Loffing, F.; Hagemann, N.; Baker, J. Human handedness in interactive situations: Negative perceptual frequency effects can be reversed! J. Sports Sci. 2012, 30, 507–513. [Google Scholar] [CrossRef]
- Hagemann, N. The advantage of being left-handed in interactive sports. Atten. Percept. Psychophys. 2009, 71, 1641–1648. [Google Scholar] [CrossRef]
- Loffing, F. Left-handedness and time pressure in elite interactive ball games. Biol. Lett. 2017, 13, 20170446. [Google Scholar] [CrossRef]
- Auerbach, B.M.; Ruff, C.B. Limb bone bilateral asymmetry: Variability and commonality among modern humans. J. Hum. Evol. 2006, 50, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Kanchan, T.; Mohan Kumar, T.S.; Pradeep Kumar, G.; Yoganarasimha, K. Skeletal asymmetry. J. Forensic. Leg. Med. 2008, 15, 177–179. [Google Scholar] [CrossRef]
- Daly, R.M.; Saxon, L.; Turner, C.H.; Robling, A.G.; Bass, S.L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004, 34, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ozener, B. Fluctuating and directional asymmetry in young human males: Effect of heavy working condition and socioeconomic status. Am. J. Phys. Anthropol. 2010, 143, 112–120. [Google Scholar] [CrossRef]
- Plato, C.C.; Wood, J.L.; Norris, A.H. Bilateral asymmetry in bone measurements of the hand and lateral hand dominance. Am. J. Phys. Anthropol. 1980, 52, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Plochocki, J.H. Directional bilateral asymmetry in human sacral morphology. Int. J. Osteoarchaeol. 2002, 12, 349–355. [Google Scholar] [CrossRef]
- Plochocki, J.H. Bilateral variation in limb articular surface dimensions. Am. J. Hum. Biol. 2004, 16, 328–333. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Dorado, C.; Olmedillas, H.; Serrano-Sanchez, J.A.; Calbet, J.A.L. Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency. Eur. J. Appl. Physiol. 2010, 110, 83–90. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, S.P. Bilateral Variations in Adipose Tissue Distribution, Segmental Lengths and Body Breadths in Relation to Physical Activity Status. Anthropol. 2007, 9, 251–254. [Google Scholar] [CrossRef]
- Mirtz, T.; Chandler, J.P.; Eyers, C.M. The Effects of Physical Activity on the Epiphyseal Growth Plates: A Review of the Literature on Normal Physiology and Clinical Implications. J. Clin. Med. Res. 2011, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ducher, G.; Courteix, D.; Même, S.; Magni, C.; Viala, J.F.; Benhamou, C.L. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: A quantitative magnetic resonance imaging study in tennis players. Bone 2005, 37, 457–466. [Google Scholar] [CrossRef]
- Kruger, A.; de Ridder, H.; Underhay, C.; Grobbelaae, H. Die voorkoms van morfologiese asimmetrie by aliteinternasionale manlike spiesgooiers. S. Afr. J. Res. Sport Phys. 2005, 27, 47–55. [Google Scholar]
- Rynkiewicz, M.; Rynkiewicz, T.; Żurek, P.; Ziemann, E.; Szymanik, R. Asymmetry of muscle mass distribution in tennis players. Trends Sport Sci. 2013, 1, 47–53. [Google Scholar]
- Krzykała, M.; Leszczyński, P. Asymmetry in body composition in female hockey players. Homo 2015, 66, 379–386. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Weber, J.; Spiteri, T.; Rantalainen, T.; Dobbin, M.; Newton, R.U. Musculoskeletal Asymmetry in Football Athletes: A Product of Limb Function over Time. Med. Sci. Sports Exerc. 2016, 48, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg Strength and Lean Mass Symmetry Influences Kicking Performance in Australian Football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar] [PubMed]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivers, R.; Fink, B.; Russell, M.; McCarty, K.; James, B.; Palestis, B.G. Lower Body Symmetry and Running Performance in Elite Jamaican Track and Field Athletes. PLoS ONE 2014, 9, e113106. [Google Scholar] [CrossRef]
- Franchi, M.V.; Longo, S.; Mallinson, J.; Quinlan, J.I.; Taylor, T.; Greenhaff, P.L.; Narici, M.V. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand. J. Med. Sci. Sports 2018, 28, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrobelli, A.; Rubiano, F.; St-Onge, M.-P.; Heymsfield, S.B. New bioimpedance analysis system: Improved phenotyping with whole-body analysis. Eur. J. Clin. Nutr. 2004, 58, 1479–1484. [Google Scholar] [CrossRef] [Green Version]
- Iermakov, S.; Podrigalo, L.V.; Jagiełło, W. Hand-grip strength as an indicator for predicting the success in martial arts athletes. Arch. Budo 2016, 12, 179–186. [Google Scholar]
- Oxford, K.L. Elbow positioning for maximum grip performance. J. Hand Ther. 2000, 13, 33–36. [Google Scholar] [CrossRef]
- Ward, J.H.J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bann, D.; Kuh, D.; Wills, A.K.; Adams, J.; Brage, S.; Cooper, R. Physical activity across adulthood in relation to fat and lean body mass in early old age: Findings from the Medical Research Council National Survey of Health and Development, 1946–2010. Am. J. Epidemiol. 2014, 179, 1197–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, A.J.; Simper, T.; Barker, M.E. Nutritional strategies of high level natural bodybuilders during competition preparation. J. Int. Soc. Sports Nutr. 2018, 15, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostikiadis, I.N.; Methenitis, S.; Tsoukos, A.; Veligekas, P.; Bogdanis, G.C. The Effect of Short-Term Sport-Specific Strength and Conditioning Training on Physical Fitness of Well-Trained Mixed Martial Arts Athletes. J. Sports Sci. Med. 2018, 17, 348–358. [Google Scholar]
- Stachoń, A.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stefaniak, T. Improving body composition and strength in athletes through a 4-month combined martial arts and strength training program. J. Educ. Health Sport 2016, 6, 445–458. [Google Scholar]
- Zaidi, Z.F. Body Asymmetries: Incidence, Etiology and Clinical Implications. Aust. J. Basic Appl. Sci. 2011, 5, 2157–2191. [Google Scholar]
- Franchini, E.; Takito, M.Y.; Bertuzzi, R.C.M. Morphological, physiological and technical variables in high-level college judoists. Arch. Budo 2005, 1, 1–7. [Google Scholar]
- Giampietro, M.; Pujia, A.; Bertini, I. Anthropometric features and body composition of young athletes practicing karate at a high and medium competitive level. Acta Diabetol. 2003, 40 (Suppl. 1), S145–S148. [Google Scholar] [CrossRef] [Green Version]
- Mala, L.; Maly, T.; Cabell, L.; Cech, P.; Hank, M.; Coufalova, K.; Zahalka, F. Body Composition and Morphological Limbs Asymmetry in Competitors in Six Martial Arts. Int. J. Morphol. 2019, 37, 568–575. [Google Scholar] [CrossRef] [Green Version]
- de Paula Lima, P.O.; Lima, A.A.; Coelho, A.C.S.; Lima, Y.L.; Almeida, G.P.L.; Bezerra, M.A.; de Oliveira, R.R. Biomechanical Differences in Brazilian Jiu-Jitsu Athletes: The Role of Combat Style. Int. J. Sports Phys. Ther. 2017, 12, 67–74. [Google Scholar]
- Vuk, S.; Čorak, N. Morphological characteristics of a top-level bodybuilder during preparation for competition: A case study. Sport Sci. 2016, 8, 7–12. [Google Scholar]
- Jones, N.B.; Ledford, E. Strength and Conditioning for Brazilian Jiu-jitsu. Strength Cond. J. 2012, 34, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Tavares, L.D.; Zanchetta, F.; Lasevicius, T.; Anorato, A.; de Souza, E.O.; Laurentino, G.C.; Franchini, E. Optimal load for the muscle power profile of prone bench pull in Brazilian Jiu-Jitsu athletes. Sport Sci. Health 2018, 14, 143–149. [Google Scholar] [CrossRef]
- Ache Dias, J.; Wentz, M.; Külkamp, W.; Mattos, D.; Goethel, M.; Borges Júnior, N. Is the handgrip strength performance better in judokas than in non-judokas? Sci. Sports 2012, 27, e9–e14. [Google Scholar] [CrossRef]
- Socha, M.; Witkowski, K.; Jonak, W.; Sobiech, K.A. Body composition and selected anthropometric traits of elite Polish female judokas in relation to the performance of right-dominant, left-dominant, or symmetrical judo techniques in vertical posture (tachi waza). Arch. Budo 2016, 12, 257–265. [Google Scholar]
- de Sèze, M.; Falgairolle, M.; Viel, S.; Assaiante, C.; Cazalets, J.-R. Sequential activation of axial muscles during different forms of rhythmic behavior in man. Exp. Brain Res. 2008, 185, 237–247. [Google Scholar] [CrossRef]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Roi, G.S.; Bianchedi, D. The science of fencing: Implications for performance and injury prevention. Sports Med. 2008, 38, 465–481. [Google Scholar] [CrossRef]
- Krzykała, M. Dual Energy X-Ray Absorptiometry in Morphological Asymmetry Assessment among Field Hockey Players. J. Hum. Kinet. 2010, 25, 77–84. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Croisier, J.-L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.; Suen, A.M.Y.; Yeung, E.W. A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. Br. J. Sports Med. 2009, 43, 589–594. [Google Scholar] [CrossRef] [PubMed]
Group | J | JJ | BB | C | p |
---|---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Body height [m] | 1.79 ± 0.75 | 1.78 ± 0.54 | 1.81 ± 0.61 | 1.79 ± 0.59 | 0.175 |
Body mass [kg] | 83.5 ± 14.84 a | 79.1 ± 12.51 | 80.8 ± 11.48 a | 73.4 ± 8.20 | 0.001 |
BMI | 26.0 ± 3.49 a | 24.9 ± 2.94 a | 24.8 ± 2.63 a | 22.9 ± 1.81 | 0.000 |
% Fat mass | 15.3 ± 5.89 a,b | 16.4 ± 4.58 | 15.7 ± 4.11 a | 18.8 ± 4.26 | 0.008 |
% Muscle mass | 62.9 ± 5.37 c | 62.5 ± 4.12 c | 60.6 ± 3.40 | 62.3 ± 4.10 c | 0.000 |
Muscle body R [kg] | 25.8 ± 4.52 a | 24.9 ± 3.90 | 25.0 ± 3.07 | 22.8 ± 2.52 | 0.013 |
Muscle body L [kg] | 26.4 ± 3.80 a | 24.3 ± 3.20 | 24.4 ± 3.23 | 22.8 ± 3.13 | 0.001 |
Muscle arm R [kg] | 4.5 ± 1.38 a | 3.8 ± 1.41 | 3.9 ± 1.25 | 3.3 ± 1.12 | 0.008 |
Muscle arm L [kg] | 4.2 ± 1.33 a | 3.7 ± 1.25 | 3.8 ± 0.90 | 3.1 ± 0.83 | 0.002 |
Muscle leg R [kg] | 8.9 ± 2.83 a | 7.9 ± 2.36 | 7.8 ± 1.90 | 6.7 ± 1.60 | 0.003 |
Muscle leg L [kg] | 9.0 ± 2.19 a | 7.9 ± 2.40 | 7.8 ± 2.10 | 6.8 ± 1.63 | 0.001 |
Muscle trunk R [kg] | 12.4 ± 2.41 | 13.2 ± 2.17 | 13.2 ± 1.61 | 12.8 ± 1.33 | 0.266 |
Muscle trunk L [kg] | 13.2 ± 2.30 | 12.7 ± 1.68 | 12.9 ± 1.13 | 12.9 ± 1.17 | 0.735 |
% Muscle body R | 49.3 ± 3.12 | 50.6 ± 1.75 | 50.6 ± 1.69 | 50.0 ± 1.99 | 0.063 |
% Muscle body L | 50.7 ± 3.12 | 49.4 ± 1.75 | 49.4 ± 1.69 | 49.9 ± 1.99 | 0.063 |
% Muscle arm R | 8.4 ± 1.65 a | 7.5 ± 1.77 | 7.8 ± 1.89 | 7.1 ± 1.57 | 0.030 |
% Muscle arm L | 7.9 ± 1.74 a | 7.4 ± 1.61 | 7.5 ± 1.08 | 6.7 ± 1.15 | 0.007 |
% Muscle leg R | 16.7 ± 3.53 a | 15.9 ± 2.95 | 15.7 ± 2.20 | 14.6 ± 2.09 | 0.026 |
% Muscle leg L | 17.2 ± 2.64 a | 15.8 ± 3.11 | 15.6 ± 2.66 | 14.8 ± 2.12 | 0.009 |
% Muscle trunk R | 24.1 ± 5.23 a | 27.1 ± 4.66 | 27.1 ± 4.18 | 28.3 ± 4.19 | 0.004 |
% Muscle trunk L | 25.6 ± 4.97 a | 26.2 ± 4.41 | 26.3 ± 3.05 | 28.4 ± 2.32 | 0.027 |
Grip strength R [kg] | 51.5 ± 8.81 | 47.4 ± 9.55 | 51.5 ± 9.79 | 50.1 ± 6.72 | 0.214 |
Grip strength L [kg] | 50.4 ± 8.66 | 46.6 ± 8.03 | 46.8 ± 9.48 | 47.3 ± 7.63 | 0.274 |
Group | J | JJ | BB | C | |
---|---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p |
Directional Asymmetry | |||||
Muscle mass body | −0.74 ± 3.12 | 0.61 ± 1.75 | 0.59 ± 1.69 | 0.03 ± 1.99 | 0.192 |
Muscle mass arm | 1.49 ± 5.81 | 0.24 ± 2.40 | 0.46 ± 3.14 | 1.39 ± 3.27 | 0.243 |
Muscle mass leg | −0.94 ± 4.81 | 0.34 ± 2.96 | 0.26 ± 2.10 | −0.46 ± 2.48 | 0.241 |
Muscle mass trunk | −1.55 ± 5.85 a | 0.89 ± 2.34 | 0.67 ± 3.01 | −0.26 ± 2.95 | 0.048 |
Grip strength | 0.50 ± 2.98 a | 0.33 ± 1.96 a | 2.44 ± 2.51 | 1.52 ± 1.95 | 0.001 |
Absolute Asymmetry | |||||
Muscle mass body | 2.12 ± 2.37 | 1.49 ± 1.07 | 1.20 ± 1.31 | 1.64 ± 1.09 | 0.313 |
Muscle mass arm | 3.36 ± 4.94 | 1.67 ± 1.72 | 1.88 ± 2.54 | 2.68 ± 2.29 | 0.092 |
Muscle mass leg | 2.60 ± 4.13 a | 2.15 ± 2.02 | 1.22 ± 1.71 | 2.11 ± 1.33 | 0.035 |
Muscle mass trunk | 3.95 ± 4.54 | 2.00 ± 1.47 | 2.12 ± 2.22 | 2.34 ± 1.75 | 0.437 |
Grip strength | 2.22 ± 2.04 | 1.45 ± 1.33 a | 2.77 ± 2.14 | 2.06 ± 1.34 | 0.037 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Chromik, K.; Stachoń, A. Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. Int. J. Environ. Res. Public Health 2020, 17, 4695. https://doi.org/10.3390/ijerph17134695
Burdukiewicz A, Pietraszewska J, Andrzejewska J, Chromik K, Stachoń A. Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. International Journal of Environmental Research and Public Health. 2020; 17(13):4695. https://doi.org/10.3390/ijerph17134695
Chicago/Turabian StyleBurdukiewicz, Anna, Jadwiga Pietraszewska, Justyna Andrzejewska, Krystyna Chromik, and Aleksandra Stachoń. 2020. "Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists" International Journal of Environmental Research and Public Health 17, no. 13: 4695. https://doi.org/10.3390/ijerph17134695
APA StyleBurdukiewicz, A., Pietraszewska, J., Andrzejewska, J., Chromik, K., & Stachoń, A. (2020). Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. International Journal of Environmental Research and Public Health, 17(13), 4695. https://doi.org/10.3390/ijerph17134695