Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players
Abstract
:1. Introduction
1.1. Esports Players and Professional Baseball Players
1.2. Psychological and Cognitive Characteristics of Esports Players and Professional Baseball Players
1.3. Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Assessment of Psychological Characteristics
2.2.2. Assessment of Neurocognitive Function
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Comparison of Psychological and Cognitive Characteristics between Esports Players, Pro-Baseball Players, and Healthy Comparison Subjects
3.3. Correlation between Psychological and Cognitive Characteristics in Esports Players, Pro-Baseball Players and Healthy Comparison Subjects
3.4. Comparison of Psychological and Cognitive Characteristics between the Elite and General Groups
4. Discussion
4.1. Comparison of Psychological and Cognitive Characteristics between Esports Players, Pro-Baseball Players, and Healthy Comparison Subjects
4.2. Comparison of Psychological and Cognitive Characteristics between the Elite and General Groups
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bányai, F.; Griffiths, M.D.; Király, O.; Demetrovics, Z. The psychology of esports: A systematic literature review. J. Gambl. Stud. 2019, 35, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Peter, S.C.; Li, Q.; Pfund, R.; Whelan, J.P.; Meyers, A.W. Public stigma across addictive behaviors: Casino gambling, Esports gambling, and internet gaming. J. Gambl. Stud. 2019, 35, 247–259. [Google Scholar] [CrossRef]
- Mallorquí-Bagué, N.; Fernández-Aranda, F.; Lozano-Madrid, M.; Granero, R.; Mestre-Bach, G.; Baño, M.; Pino-Gutiérrez, A.D.; Gómez-Peña, M.; Aymamí, N.; Menchón, J.M.; et al. Internet gaming disorder and online gambling disorder: Clinical and personality correlates. J. Behav. Addict. 2017, 6, 669–677. [Google Scholar] [CrossRef]
- Tonioni, F.; Mazza, M.; Autullo, G.; Pellicano, G.R.; Aceto, P.; Catalano, V.; Marano, G.; Corvino, S.; Martinelli, D.; Fiumana, V.; et al. Socio-emotional ability, temperament and coping strategies associated with different use of Internet in Internet addiction. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3461–3466. [Google Scholar]
- Green, C.S.; Bavelier, D. Action-video-game experience alters the spatial resolution of vision. Psychol. Sci. 2007, 18, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Bavelier, D.; Green, C.S.; Pouget, A.; Schrater, P. Brain plasticity through the life span: Learning to learn and action video games. Annu. Rev. Neurosci. 2012, 35, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Bejjanki, V.R.; Zhang, R.; Li, R.; Pouget, A.; Green, C.S.; Lu, Z.-L.; Bavelier, D. Action video game play facilitates the development of better perceptual templates. Proc. Natl. Acad. Sci. USA 2014, 111, 16961–16966. [Google Scholar] [CrossRef] [Green Version]
- Bediou, B.; Adams, D.M.; Mayer, R.E.; Tipton, E.; Green, C.S.; Bavelier, D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 2018, 144, 77–110. [Google Scholar] [CrossRef]
- Chopin, A.; Bediou, B.; Bavelier, D. Altering perception: The case of action video gaming. Curr. Opin. Psychol. 2019, 29, 168–173. [Google Scholar] [CrossRef]
- Torner, H.P.; Carbonell, X.; Castejón, M. A comparative analysis of the processing speed between video game players and non-players. Aloma 2019, 37, 13–20. [Google Scholar]
- Green, C.S.; Bavelier, D. Enumeration versus multiple object tracking: The case of action video game players. Cognition 2006, 101, 217–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelstein, D.; Liu, Y.; Shapiro, J.L. An exploration of mental skills among competitive League of Legend players. Int. J. Gaming Comput. Mediat. Simul. 2017, 9, 1–21. [Google Scholar] [CrossRef]
- Han, D.H.; Lyoo, I.K.; Renshaw, P.F. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J. Psychiatr. Res. 2012, 46, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, S.; Bellebaum, C.; Lech, R.K.; Heinen, R.; Suchan, B. Play to win: Action video game experience and attention driven perceptual exploration in categorization learning. Front. Psychol. 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.M.; Kim, J.H.; Yang, E.; Abrams, K.Y.; Lyoo, I.K. Reliability and validity of the Korean version of the temperament and character inventory. Compr. Psychiatry 2002, 43, 235–243. [Google Scholar] [CrossRef]
- Han, D.H.; Kim, J.H.; Lee, Y.S.; Joeng Bae, S.; Jin Bae, S.; Kim, H.J.; Sim, M.Y.; Sung, Y.H.; Kyoon Lyoo, I. Influence of temperament and anxiety on athletic performance. J. Sports Sci. Med. 2006, 5, 381–389. [Google Scholar]
- Ha, E.J.; Kang, K.D.; Han, D.H. The comparison of psychological characteristics between Korean and Japanese women pro-basketball players. Psychiatry Investig. 2019, 16, 524–531. [Google Scholar] [CrossRef]
- Kang, K.D.; Han, D.H.; Hannon, J.C.; Hall, M.S.; Choi, J.W. Temperamental predictive factors for success in Korean professional baseball players. Psychiatry Investig. 2015, 12, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Han, D.H.; Kim, B.N.; Cheong, J.H.; Kang, K.D.; Renshaw, P.F. Anxiety and attention shifting in professional baseball players. Int. J. Sports Med. 2014, 35, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Furley, P.A.; Memmert, D. Working memory capacity as controlled attention in tactical decision making. J. Sport Exerc. Psychol. 2012, 34, 322–344. [Google Scholar] [CrossRef]
- Faber, I.R.; Elferink-Gemser, M.T.; Faber, N.R.; Oosterveld, F.G.; Nijhuis-Van der Sanden, M.W. Can perceptuo-motor skills assessment outcomes in young table tennis players (7–11 years) predict future competition participation and performance? An observational prospective study. PLoS ONE 2016, 11, e0149037. [Google Scholar]
- Notarnicola, A.; Maccagnano, G.; Pesce, V.; Tafuri, S.; Novielli, G.; Moretti, B. Visual-spatial capacity: Gender and sport differences in young volleyball and tennis athletes and non-athletes. BMC Res. Notes 2014, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Sato, T.; Hara, T.; Takedomi, Y.; Ozaki, I.; Yamada, S. Correlations between trait anxiety, personality and fatigue: Study based on the temperament and character inventory. J. Psychosom. Res. 2003, 55, 493–500. [Google Scholar] [CrossRef]
- Guillén-Riquelme, A.; Buela-Casal, G. Meta-analysis of group comparison and meta-analysis of reliability generalization of the State-Trait Anxiety Inventory Questionnaire (STAI). Rev. Esp. Salud. Publ. 2014, 88, 101–112. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, P.R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Kaller, C.P.; Debelak, R.; Köstering, L.; Egle, J.; Rahm, B.; Wild, P.S.; Blettner, M.; Beutel, M.E.; Unterrainer, J.M. Assessing planning ability across the adult life span: Population-representative and age-adjusted reliability estimates for the Tower of London (TOL-F). Arch. Clin. Neuropsychol. 2016, 31, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Köstering, L.; Nitschke, K.; Schumacher, F.K.; Weiller, C.; Kaller, C.P. Test-retest reliability of the Tower of London planning task (TOL-F). Psychol. Assess. 2015, 27, 925–931. [Google Scholar] [CrossRef]
- Van Biesen, D.; Mactavish, J.; McCulloch, K.; Lenaerts, L.; Vanlandewijck, Y.C. Cognitive profile of young well-trained athletes with intellectual disabilities. Res. Dev. Disabil. 2016, 53–54, 377–390. [Google Scholar] [CrossRef]
- Lewis, G.J.; Lefevre, C.E.; Young, A.W. Functional architecture of visual emotion recognition ability: A latent variable approach. J. Exp. Psychol. Gen. 2016, 145, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.L.; Lin, C.Y. The relationship between action anticipation and emotion recognition in athletes of open skill sports. Cogn. Process. 2016, 17, 259–268. [Google Scholar] [CrossRef]
- Weisbuch, M.; Grunberg, R.L.; Slepian, M.L.; Ambady, N. Perceptions of variability in facial emotion influence beliefs about the stability of psychological characteristics. Emotion 2016, 16, 957–964. [Google Scholar] [CrossRef]
- Habacha, H.; Lejeune-Poutrain, L.; Margas, N.; Molinaro, C. Effects of the axis of rotation and primordially solicited limb of high level athletes in a mental rotation task. Hum. Mov. Sci. 2014, 37, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Habacha, H.; Molinaro, C.; Dosseville, F. Effects of gender, imagery ability, and sports practice on the performance of a mental rotation task. Am. J. Psychol. 2014, 127, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Lütke, N.; Lange-Küttner, C. Keeping it in three dimensions: Measuring the development of mental rotation in children with the Rotated Colour Cube Test (RCCT). Int. J. Dev. Sci. 2015, 9, 95–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocłowska, M.A.; Ritter, S.M.; Elliot, A.J.; Baas, M. Novelty seeking is linked to openness and extraversion, and can lead to greater creative performance. J. Pers. 2018, 87, 252–266. [Google Scholar] [CrossRef]
- Schweizer, T.S. The psychology of novelty-seeking, creativity and innovation: Neurocognitive aspects within a work-psychological perspective. Creat. Innov. Manag. 2006, 15, 164–172. [Google Scholar] [CrossRef]
- Rodin, J.; Schooler, C.; Schaie, K.W. Self-Directedness: Cause and Effects throughout the Life Course; Psychology Press: New York, NY, USA, 2013. [Google Scholar]
- Levenson, M.R.; Jennings, P.A.; Aldwin, C.M.; Shiraishi, R.W. Self-transcendence: Conceptualization and measurement. Int. J. Aging Hum. Dev. 2005, 60, 127–143. [Google Scholar] [CrossRef]
- Paulus, M.P.; Rogalsky, C.; Simmons, A.; Feinstein, J.S.; Stein, M.B. Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 2003, 19, 1439–1448. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction. Am. J. Addict. 2015, 24, 117–125. [Google Scholar] [CrossRef]
- Deary, I.J.; Der, G. Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 2005, 12, 187–215. [Google Scholar] [CrossRef]
- Achtman, R.L.; Green, C.S.; Bavelier, D. Video games as a tool to train visual skills. Restor. Neurol. Neurosci. 2008, 26, 435–446. [Google Scholar]
- Khatri, N.; Ng, H.A. The role of intuition in strategic decision making. Hum. Relat. 2000, 53, 57–86. [Google Scholar] [CrossRef]
- Mielke, R.; Bahlke, S. Structure and preferences of fundamental values of young athletes do they differ from non-athletes and from young people with alternative leisure activities? Int. Rev. Sociol. Sport 1995, 30, 419–436. [Google Scholar] [CrossRef]
Pro-Gamers (n = 55) | Pro-Baseball (n = 57) | HC (n = 60) | Statistics | |||
---|---|---|---|---|---|---|
Age (mean ± SD) | 21.3 ± 1.4 | 21.3 ± 1.4 | 21.3 ± 1.5 | F = 0.01, p = 0.99, ŋ = 0.004 | ||
Education (years) (mean ± SD) | 12.1 ± 0.8 | 11.9 ± 0.2 | 12.1 ± 1.3 | F = 0.51, p = 0.60, ŋ = 0.203 | ||
Career (years) (mean ± SD) | 3.3 ± 1.1 | 3.3 ± 1.4 | - | t = 0.06, p = 0.95, d < 0.001 | ||
Genre/Position | Overwatch | 16 (29.0) | Infield | 21 (36.8) | - | |
n(%) | BG | 7 (12.7) | Outfield | 12 (21.1) | - | |
LOL | 20 (36.4) | Pitcher | 24 (42.1) | - | ||
StarCraft | 12 (21.9) |
Pro-Gamers (n = 55) | Pro-Baseball (n = 57) | HC (n = 60) | Statistics | |
---|---|---|---|---|
Psychological Characteristics | ||||
Temperament and Characteristics Inventory (Mean± Standard Deviation) | ||||
NS *** | 21.5 ± 5.4 | 21.6 ± 4.9 | 18.7 ± 3.7 | F = 8.99, p < 0.01, ŋ = 0.818 |
HA *** | 18.7 ± 6.3 | 13.9 ± 7.1 | 14.6 ± 4.9 | F = 6.29, p < 0.01, ŋ = 0.759 |
RD | 14.4 ± 4.0 | 15.1 ± 3.1 | 15.2 ± 3.2 | F = 0.63, p = 0.53, ŋ = 0.239 |
P | 5.0 ± 2.0 | 5.5 ± 1.7 | 4.8 ± 1.6 | F = 2.89, p = 0.06, ŋ = 0.591 |
SD ** | 24.1 ± 5.9 | 24.9 ± 4.7 | 21.8 ± 6.1 | F = 6.26, p < 0.01, ŋ = 0.757 |
C | 27.4 ± 4.8 | 29.2 ± 6.1 | 27.3 ± 5.5 | F = 2.07, p = 0.13, ŋ = 0.509 |
ST ** | 15.6 ± 5.9 | 15.1 ± 4.9 | 12.9 ± 5.4 | F = 11.69, p < 0.01, ŋ = 0.853 |
State-Trait Anxiety Inventory-KY (Mean± Standard Deviation) | ||||
State * | 37.7 ± 9.4 | 37.2 ± 8.7 | 42.4 ± 5.6 | F = 8.41, p < 0.01, ŋ = 0.808 |
Trait | 39.2 ± 10.2 | 38.2 ± 10.4 | 40.8 ± 6.1 | F = 1.52, p = 0.22, ŋ = 0.432 |
Neurocognitive Function Tests | ||||
Modified Tower of London (Mean± Standard Deviation) | ||||
ToL-RT * | 6.7 ± 1.0 | 8.3 ± 2.1 | 8.4 ± 1.9 | F = 9.31, p < 0.01, ŋ = 0.823 |
ToL-CR | 7.1 ± 0.7 | 7.1 ± 0.8 | 7.6 ± 1.1 | F = 0.31, p = 0.42, ŋ = 0.134 |
Emotional Perception (Mean± Standard Deviation) | ||||
EP-RT * | 4.3 ± 1.2 | 3.6 ± 0.9 | 4.5 ± 1.2 | F = 8.62, p < 0.01, ŋ = 0.812 |
EP-CR | 80.1 ± 7.1 | 75.4 ± 10.8 | 74.9 ± 9.7 | F = 2.91, p = 0.06, ŋ = 0.592 |
Mental Rotation (Mean± Standard Deviation) | ||||
MR-RT * | 3.6 ± 0.9 | 2.9 ± 1.2 | 3.7 ± 1.0 | F = 9.67, p < 0.01, ŋ = 0.829 |
MR-CR * | 88.8 ± 4.8 | 70.1 ± 15.9 | 70.7 ± 13.9 | F = 19.63, p < 0.01, ŋ = 0.907 |
Elite Pro-Gamers (n = 12) | General Pro-Gamers (n = 43) | Statistics | |
---|---|---|---|
Psychological Characteristics | |||
Temperament and Characteristics Inventory (Mean± Standard Deviation) | |||
NS *** | 27.6 ± 3.1 | 18.4 ± 3.2 | t = 6.00, p < 0.01, d = 2.761 |
HA | 18.0 ± 6.7 | 19.1 ± 6.2 | t = −0.53, p = 0.43, d = 0.170 |
RD | 14.9 ± 3.4 | 14.1 ± 4.4 | t = 0.68, p = 0.49, d = 0.203 |
P | 4.8 ± 2.3 | 5.2 ± 1.9 | t = −1.54, p = 0.13, d = 0.189 |
SD ** | 29.6 ± 3.7 | 22.6 ± 5.6 | t = 3.06, p < 0.01, d = 1.475 |
C | 27.4 ± 3.2 | 27.4 ± 5.6 | t = 0.06, p = 0.82, d < 0.001 |
ST ** | 17.3 ± 5.1 | 8.4 ± 3.2 | t = 4.82, p < 0.01, d = 2.107 |
State-Trait Anxiety Inventory-KY (Mean± Standard Deviation) | |||
State * | 31.1 ± 4.4 | 41.2 ± 9.6 | t = −3.19, p < 0.01, d = 1.353 |
Trait | 39.3 ± 7.1 | 39.2 ± 11.7 | t = 0.08, p = 0.64, d = 0.010 |
Neurocognitive Function Tests | |||
Modified Tower of London (Mean± Standard Deviation) | |||
ToL-RT * | 5.9 ± 0.4 | 7.1 ± 1.0 | t = −3.03, p < 0.01, d = 1.576 |
ToL-CR | 7.1 ± 0.9 | 7.2 ± 0.6 | t = −0.09, p = 0.76, d = 0.131 |
Emotional Perception (Mean± Standard Deviation) | |||
EP-RT * | 3.4 ± 0.8 | 4.7 ± 1.2 | t = −2.08, p = 0.01, d = 1.274 |
EP-CR | 83.1 ± 5.4 | 78.5 ± 5.6 | t = 1.72, p = 0.06, d = 0.836 |
Mental Rotation (Mean± Standard Deviation) | |||
MR-RT | 3.7 ± 0.9 | 3.6 ± 0.9 | t = 0.56, p = 0.48, d = 0.111 |
MR-CR * | 93.0 ± 3.2 | 86.5 ± 3.9 | t = 4.33, p < 0.01, d = 1.822 |
Elite Pro-Baseball (n = 14) | General Pro-Baseball (n = 43) | Statistics | |
---|---|---|---|
Psychological Characteristics | |||
Temperament and Characteristics Inventory (Mean± Standard Deviation) | |||
NS *** | 25.5 ± 4.4 | 19.9 ± 4.1 | t = 3.97, p < 0.01, d = 1.316 |
HA | 14.5 ± 6.4 | 13.7 ± 7.3 | t = 1.22, p = 0.17, d = 0.116 |
RD | 14.4 ± 3.8 | 15.3 ± 2.9 | t = −1.44, p = 0.13, d = 0.266 |
P | 5.3 ± 1.7 | 5.6 ± 1.7 | t = −1.76, p = 0.08, d = 0.176 |
SD ** | 29.9 ± 3.1 | 23.1 ± 3.8 | t = 3.21, p < 0.01, d = 1.961 |
C | 27.3 ± 7.7 | 29.9 ± 5.4 | t = −1.66, p = 0.08, d = 0.391 |
ST ** | 14.8 ± 4.9 | 11.2 ± 4.2 | t = 3.34, p = 0.01, d = 0.788 |
State-Trait Anxiety Inventory-KY (Mean± Standard Deviation) | |||
State | 32.2 ± 6.2 | 38.9 ± 8.9 | t = 2.96, p = 0.03, d = 0.873 |
Traits | 38.8 ± 13.6 | 38.6 ± 9.3 | t = 0.07, p = 0.66, d = 0.069 |
Neurocognitive Function Tests | |||
Modified Tower of London (Mean± Standard Deviation) | |||
ToL-RT | 8.2 ± 1.4 | 8.4 ± 2.3 | t = −1.43, p = 0.14, d = 0.105 |
ToL-CR | 7.5 ± 0.7 | 7.3 ± 0.9 | t = 1.49, p = 0.12, d = 0.248 |
Emotional Perception (Mean± Standard Deviation) | |||
EP-RT * | 2.9 ± 0.8 | 3.8 ± 0.8 | t = −3.11, p < 0.01, d = 1.125 |
EP-CR | 76.2 ± 11.8 | 75.2 ± 10.6 | t = 1.77, p = 0.08, d = 0.089 |
Mental Rotation (Mean± Standard Deviation) | |||
MR-RT | 2.6 ± 0.8 | 3.0 ± 1.3 | t = 2.97, p = 0.03, d = 0.371 |
MR-CR | 67.8 ± 11.7 | 70.8 ± 17.1 | t = 1.87, p = 0.08, d = 0.205 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.O.; Kang, K.D.; Lee, J.W.; Nam, J.J.; Han, D.H. Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players. Int. J. Environ. Res. Public Health 2020, 17, 4797. https://doi.org/10.3390/ijerph17134797
Kang JO, Kang KD, Lee JW, Nam JJ, Han DH. Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players. International Journal of Environmental Research and Public Health. 2020; 17(13):4797. https://doi.org/10.3390/ijerph17134797
Chicago/Turabian StyleKang, Jin Oh, Kyoung Doo Kang, Jea Woog Lee, Jae Jun Nam, and Doug Hyun Han. 2020. "Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players" International Journal of Environmental Research and Public Health 17, no. 13: 4797. https://doi.org/10.3390/ijerph17134797
APA StyleKang, J. O., Kang, K. D., Lee, J. W., Nam, J. J., & Han, D. H. (2020). Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players. International Journal of Environmental Research and Public Health, 17(13), 4797. https://doi.org/10.3390/ijerph17134797