Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Body Composition Measurements
2.4. Performance Measurements
2.5. Quantification of the Training Load
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hellard, P.; Scordia, C.; Avalos, M.; Mujika, I.; Pyne, D.B. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl. Physiol. Nutr. Metab. 2017, 42, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Hellard, P.; Avalos, M.; Hausswirth, C.; Pyne, D.; Toussaint, J.F.; Mujika, I. Identifying Optimal Overload and Taper in Elite Swimmers over Time. J. Sports Sci. Med. 2013, 12, 668–678. [Google Scholar] [PubMed]
- Mujika, I.; Halson, S.; Burke, L.M.; Balagué, G.; Farrow, D. An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef]
- Halson, S.L.; Bridge, M.W.; Meeusen, R.; Busschaert, B.; Gleeson, M.; Jones, D.A.; Jeukendrup, A.E. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J. Appl. Physiol. 2002, 93, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Morgado, J.P.; Matias, C.N.; Reis, J.F.; Curto, D.; Alves, F.B.; Monteiro, C.P. The Cellular Composition of the Innate and Adaptive Immune System Is Changed in Blood in Response to Long-Term Swimming Training. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Cortesi, M.; Campa, F.; Perazzolo, M.; Gatta, G. Recovery time profiling after short-, middle-and long-distance swimming performance. J. Strength Cond. Res. 2019, 33, 1408–1415. [Google Scholar] [CrossRef]
- Ten Haaf, T.; van Staveren, S.; Oudenhoven, E.; Piacentini, M.F.; Meeusen, R.; Roelands, B.; Daanen, H.A.M.; Foster, C.; de Koning, J.J. Prediction of Functional Overreaching From Subjective Fatigue and Readiness to Train After Only 3 Days of Cycling. Int. J. Sports Physiol. Perform. 2017, 12, S287–S294. [Google Scholar] [CrossRef] [Green Version]
- Fry, R.W.; Morton, A.R.; Keast, D. Overtraining in athletes. An update. Sports Med. 1991, 12, 32–65. [Google Scholar] [CrossRef]
- Campa, F.; Piras, A.; Raffi, M.; Trofè, A.; Perazzolo, M.; Mascherini, G.; Toselli, S. The effects of dehydration on metabolic and neuromuscular functionality during cycling. Int. J. Environ. Res. Public Health 2020, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujika, I.; Padilla, S.; Pyne, D.; Busso, T. Physiological changes associated with the pre-event taper in athletes. Sports Med. 2004, 34, 891–927. [Google Scholar] [CrossRef] [PubMed]
- Papoti, M.; Martins, L.E.; Cunha, S.A.; Zagatto, A.M.; Gobatto, C.A. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J. Strength Cond. Res. 2007, 21, 538–542. [Google Scholar] [PubMed]
- Trappe, S.; Costill, D.; Thomas, R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med. Sci. Sports Exerc. 2000, 32, 48–56. [Google Scholar] [CrossRef]
- Trinity, J.D.; Pahnke, M.D.; Reese, E.C.; Coyle, E.F. Maximal mechanical power during a taper in elite swimmers. Med. Sci. Sports Exerc. 2006, 38, 1643–1649. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Piras, A.; Raffi, M.; Toselli, S. Functional Movement Patterns and Body Composition of High-Level Volleyball, Soccer, and Rugby Players. J. Sport Rehabil. 2019, 28, 740–745. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601–2611. [Google Scholar] [CrossRef]
- Silva, A.M. Structural and Functional Body Components in Athletic Health and Performance Phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic bioelectrical impedance vector reference values for assessing body composition in male and female athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Toselli, S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying athlete body-fluid changes during a competitive season with bioelectrical impedance vector analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Gatterer, H.; Lukaski, H.; Toselli, S. Stabilizing bioimpedance-vector-analysis measures with a 10-minute cold shower after running exercise to enable assessment of body hydration. Int. J. Sports Physiol. Perform. 2019, 14, 1006–1009. [Google Scholar] [CrossRef]
- Carrasco-Marginet, M.; Castizo-Olier, J.; Rodríguez-Zamora, L.; Iglesias, X.; Rodríguez, F.A.; Chaverri, D.; Brotons, D.; Irurtia, A. Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers. PLoS ONE 2017, 12, e0178819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. Declaration of Helsinki—Ethical Principles for Medical Research involving Human Subjects. WMJ 2008, 54, 122–125. [Google Scholar]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef]
- Matias, C.N.; Santos, D.A.; Júdice, P.B.; Magalhães, J.P.; Minderico, C.S.; Fields, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clin. Nutr. 2016, 35, 468–474. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Santos, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Fat-free Mass BIA Predictive Equation for Athletes Using a 4-Compartment Model. Int. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Morgado, J.P.; Monteiro, C.P.; Matias, C.N.; Reis, J.F.; Teles, J.; Laires, M.J.; Alves, F. Long-term swimming training modifies acute immune cell response to a high-intensity session. Eur. J. Appl. Physiol. 2018, 118, 573–583. [Google Scholar] [CrossRef]
- Morgado, J.P.; Monteiro, C.P.; Matias, C.N.; Alves, F.; Pessoa, P.; Reis, J.; Martins, F.; Seixas, T.; Laires, M.J. Sex-based effects on immune changes induced by a maximal incremental exercise test in well-trained swimmers. J. Sports Sci. Med. 2014, 13, 708–714. [Google Scholar] [PubMed]
- Rama, L.; Teixeira, A.M.; Matos, A.; Borges, G.; Henriques, A.; Gleeson, M.; Pedreiro, S.; Filaire, E.; Alves, F.; Paiva, A. Changes in natural killer cell subpopulations over a winter training season in elite swimmers. Eur. J. Appl. Physiol. 2013, 113, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, L.; Lanfranconi, F.; Tredici, G.; Schenk, K.; Burtscher, M.; Gatterer, H. Body fluid status and physical demand during the Giro d’Italia. Res. Sports Med. 2016, 24, 30–38. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Gatterer, H.; Lukaski, H.; Burtscher, M.; Galanti, G. Changes in hydration, body-cell massand endurance performance of professional soccer players through a competitive season. J. Sports Med. Phys. Fit. 2015, 55, 749–755. [Google Scholar]
- Neary, J.P.; Martin, T.P.; Quinney, H.A. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med. Sci. Sports Exerc. 2003, 35, 1875–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepley, B.; MacDougall, J.D.; Cipriano, N.; Sutton, J.R.; Tarnopolsky, M.A.; Coates, G. Physiological effects of tapering in highly trained athletes. J. Appl. Physiol. (1985) 1992, 72, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.G.; Heymsfield, S.B. Phase Angle and Its Determinants in Healthy Subjects: Influence of Body Composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobaus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin. Nutr. 2002, 31, 854–861. [Google Scholar] [CrossRef]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Shapiro, G.; Feldman, L.; Stav, K.; Sandbank, J.; Averbukh, Z. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur. J. Clin. Nutr. 2014, 68, 683–689. [Google Scholar] [CrossRef]
- Nabuco, H.C.G.; Silva, A.M.; Sardinha, L.B.; Rodrigues, F.B.; Tomeleri, C.M.; Ravagnani, F.; Cyrino, E.S.; Ravagnani, C. Phase Angle is Moderately Associated with Short-term Maximal Intensity Efforts in Soccer Players. Int. J. Sports Med. 2019, 40, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Toselli, S. Changes in phase angle and handgrip strength induced by suspension training in older women. Int. J. Sports Med. 2018, 39, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Smoliner, C.; Valentini, L.; Lochs, H.; Pirlich, M. Is bioelectrical impedance vector analysis of value in the elderly with malnutrition and impaired functionality? Nutrition 2007, 23, 564–569. [Google Scholar] [CrossRef] [PubMed]
Variable | M1 | M2 | M3 | ANOVA/Friedman | |
---|---|---|---|---|---|
F/X2 | p | ||||
Weight (kg) | 68.6 ± 9.7 | 67.8 ± 9.6 | 67.7 ± 9.3 | 0.0 | 0.96 |
Height (m) | 1.77 ± 0.1 | - | - | - | - |
Fat mass (kg) | 16.3 ± 2.2 | 14.7 ± 2.0 | 14.2 ± 2.5 | 2.8 | 0.72 |
Fat mass (%) | 23.9 ± 2.1 | 21.5 ± 2.5 | 20.8 ± 2.8 * | 4.0 | 0.01 |
FFM (kg) | 52.3 ± 8.1 | 53.9 ± 8.5 | 53.5 ± 8.2 | 0.2 | 0.80 |
TBW (L) | 37.8 ± 5.3 | 38.6 ± 5.7 | 38.9 ± 5.6 | 0.1 | 0.86 |
ECW (L) | 16.1 ± 2.0 | 16.5 ± 2.2 | 16.5 ± 2.0 | 0.1 | 0.84 |
ICW (L) | 21.6 ± 3.4 | 22.1 ± 3.5 | 22.4 ± 3.5 | 0.1 | 0.85 |
R/H (Ohm/m) | 319.6 ± 45.9 | 287.4 ± 39.7 | 279.6 ± 37.7 | 3.2 | 0.05 |
Xc/H (Ohm/m) | 72.5 ± 11.8 | 67.7 ± 6.3 | 68.3 ± 6.1 | 1.3 | 0.27 |
VL/H (Ohm/m) | 322.1 ± 46.0 | 290.1 ± 39.8 | 289.8 ± 39.9 | 2.3 | 0.11 |
PhA (º) | 7.2 ± 0.6 | 7.3 ± 0.6 | 7.9 ± 0.7 *,# | 4.7 | 0.01 |
T50 m (s) | 28.1 ± 4.2 | 27.9 ± 3.7 | 27.1 ± 3.4 *,# | 30.9 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J.F.; Matias, C.N.; Campa, F.; Morgado, J.P.; Franco, P.; Quaresma, P.; Almeida, N.; Curto, D.; Toselli, S.; Monteiro, C.P. Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach. Int. J. Environ. Res. Public Health 2020, 17, 4851. https://doi.org/10.3390/ijerph17134851
Reis JF, Matias CN, Campa F, Morgado JP, Franco P, Quaresma P, Almeida N, Curto D, Toselli S, Monteiro CP. Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach. International Journal of Environmental Research and Public Health. 2020; 17(13):4851. https://doi.org/10.3390/ijerph17134851
Chicago/Turabian StyleReis, Joana F., Catarina N. Matias, Francesco Campa, José P. Morgado, Paulo Franco, Pedro Quaresma, Nuno Almeida, Dalia Curto, Stefania Toselli, and Cristina P. Monteiro. 2020. "Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach" International Journal of Environmental Research and Public Health 17, no. 13: 4851. https://doi.org/10.3390/ijerph17134851
APA StyleReis, J. F., Matias, C. N., Campa, F., Morgado, J. P., Franco, P., Quaresma, P., Almeida, N., Curto, D., Toselli, S., & Monteiro, C. P. (2020). Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach. International Journal of Environmental Research and Public Health, 17(13), 4851. https://doi.org/10.3390/ijerph17134851