Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Eccentric Exercise
2.3. Myostatin A55T Genotyping
2.4. Maximal Isometric Strength
2.5. Muscle Soreness
2.6. Creatine Kinase and Aspartate Transaminase
2.7. Statistical Analysis
3. Results
3.1. Hardy–Weinberg Equilibrium Test of Myostatin A55T Genotype
3.2. Change of Muscle Damage Markers After Eccentric Exercise According to Myostatin A55T Genotype
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, Y.I.; Leem, Y.H. Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise. J. Exerc. Nutr. Biochem. 2019, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Tanabe, Y.; Akazawa, N.; Zempo-Miyaki, A.; Maeda, S. Curcumin supplementation attenuates the decrease in endothelial function following eccentric exercise. J. Exerc. Nutr. Biochem. 2019, 23, 7–12. [Google Scholar] [CrossRef]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar] [PubMed]
- Doma, K.; Leicht, A.; Sinclair, W.; Schumann, M.; Damas, F.; Burt, D.; Woods, C. Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. J. Strength Cond. Res. 2018, 32, 1731–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, T.; Mizuno, S.; Goto, K. Effects of cold water immersion and compression garment use after eccentric exercise on recovery. J. Exerc. Nutr. Biochem. 2019, 23, 48–54. [Google Scholar] [CrossRef]
- Newton, M.J.; Morgan, G.T.; Sacco, P.; Chapman, D.W.; Nosaka, K. Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J. Strength Cond. Res. 2008, 22, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Paschalis, V.; Nikolaidis, M.G.; Giakas, G.; Theodorou, A.A.; Sakellariou, G.K.; Fatouros, I.G.; Koutedakis, Y.; Jamurtas, A.Z. Beneficial changes in energy expenditure and lipid profile after eccentric exercise in overweight and lean women. Scand. J. Med. Sci. Sports. 2010, 20, 103–111. [Google Scholar] [CrossRef]
- Roth, S.M.; Martel, G.F.; Ivey, F.M.; Lemmer, J.T.; Metter, E.J.; Hurley, B.F.; Rogers, M.A. High-volume, heavy-resistance strength training and muscle damage in young and older women. J. Appl. Physiol. 2000, 88, 1112–1118. [Google Scholar] [CrossRef] [Green Version]
- Tiidus, P.M. Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can. J. Appl. Physiol. 2000, 25, 274–287. [Google Scholar] [CrossRef]
- Yamin, C.; Amir, O.; Sagiv, M.; Attias, E.; Meckel, Y.; Eynon, N.; Sagiv, M.; Amir, R.E. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J. Appl. Physiol. 2007, 103, 2057–2061. [Google Scholar] [CrossRef] [Green Version]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenta, E.M.; Coelho, D.B.; Cruz, I.R.; Morandi, R.F.; Veneroso, C.E.; de Azambuja Pussieldi, G.; Carvalho, M.R.; Silami-Garcia, E.; De Paz Fernández, J.A. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur. J. Appl. Physiol. 2012, 112, 1495–1503. [Google Scholar] [CrossRef]
- Venckunas, T.; Skurvydas, A.; Brazaitis, M.; Kamandulis, S.; Snieckus, A.; Moran, C.N. Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout effect. Appl. Physiol. Nutr. Metab. 2012, 37, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.R.; McPherron, A.C.; Winik, N.; Lee, S.J. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann. Neurol. 2002, 52, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Gumucio, J.P.; Sugg, K.B.; Mendias, C.L. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc. Sport Sci. Rev. 2015, 43, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.N.; Lee, W.J.; Liu, L.K.; Lin, M.H.; Chen, L.K. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass. J. Cachexia Sarcopenia Muscle 2018, 9, 635–642. [Google Scholar] [CrossRef]
- Rodriguez, J.; Vernus, B.; Chelh, I.; Cassar-Malek, I.; Gabillard, J.C.; Hadj Sassi, A.; Seiliez, I.; Picard, B.; Bonnieu, A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell. Mol. Life Sci. 2014, 71, 4361–4371. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Nigam, P.; Misra, A.; Guleria, R.; Luthra, K.; Jain, S.K.; Qadar Pasha, M.A. Association of the Myostatin gene with obesity, abdominal obesity and low lean body mass and in non-diabetic Asian Indians in north India. PLoS ONE 2012, 7, 40977. [Google Scholar] [CrossRef]
- Corsi, A.M.; Ferrucci, L.; Gozzini, A.; Tanini, A.; Brandi, M.L. Myostatin polymorphisms and age-related sarcopenia in the Italian population. J. Am. Geriatr. Soc. 2002, 50, 1463. [Google Scholar] [CrossRef]
- Ferrell, R.E.; Conte, V.; Lawrence, E.C.; Roth, S.M.; Hagberg, J.M.; Hurley, B.F. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 1999, 62, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014, 32, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Kostek, M.A.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.; Zoeller, R.F.; Price, T.B.; Seip, R.L.; Thompson, P.D.; et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med. Sci. Sports Exerc. 2009, 41, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivey, F.M.; Roth, S.M.; Ferrell, R.E.; Tracy, B.L.; Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Siegel, E.L.; Fozard, J.L.; Jeffrey Metter, E.; et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Devaney, J.M.; Hoffman, E.P.; Gordish-Dressman, H.; Kearns, A.; Zambraski, E.; Clarkson, P.M. IGF-II gene region polymorphisms related to exertional muscle damage. J. Appl. Physiol. 2007, 102, 1815–1823. [Google Scholar] [CrossRef]
- Hubal, M.J.; Devaney, J.M.; Hoffman, E.P.; Zambraski, E.J.; Gordish-Dressman, H.; Kearns, A.K.; Larkin, J.S.; Adham, K.; Patel, R.R.; Clarkson, P.M. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J. Appl. Physiol. 2010, 108, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, K.; Chapman, D.; Newton, M.; Sacco, P. Is isometric strength loss immediately after eccentric exercise related to changes in indirect markers of muscle damage? Appl. Physiol. Nutr. Metab 2006, 31, 313–319. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hoffman, E.P.; Zambraski, E.; Gordish-Dressman, H.; Kearns, A.; Hubal, M.; Harmon, B.; Devaney, J.M. ACTN3 and MLCK genotype associations with exertional muscle damage. J. Appl. Physiol. 2005, 99, 564–569. [Google Scholar] [CrossRef]
- Byrne, C.; Eston, R.G.; Edwards, R.H. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2001, 11, 134–140. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. Plasma MMP-9, TIMP-1, and TGF-β1 responses to exercise-induced muscle injury. Int. J. Environ. Res. Public Health 2020, 17, 566. [Google Scholar] [CrossRef] [Green Version]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.J.; Bijur, P.E.; Latimer, C.; Silver, W. Reliability and validity of a visual analog scale for acute abdominal pain in the ED. Am. J. Emerg. Med. 2002, 20, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Shadrach, J.L.; Wagers, A.J. Stem cells for skeletal muscle repair. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2297–2306. [Google Scholar] [CrossRef]
- Hawke, T.J.; Garry, D.J. Myogenic satellite cells: Physiology to molecular biology. J. Appl. Physiol. 2001, 91, 534–551. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, C.R.; Wenke, J.C.; Warren, G.L.; Armstrong, R.B. Importance of satellite cells in the strength recovery after eccentric contraction-induced muscle injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Jan, A.T.; Baig, M.H.; Ashraf, J.M.; Nahm, S.S.; Kim, Y.W.; Park, S.Y.; Choi, I. Fibromodulin: A master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J. 2016, 30, 2708–2719. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.S.; Liang, L.F.; Wang, S.; Ratovitski, T.; Holmstrom, J.; Barker, C.; Stotish, R. Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem. Biophys. Res. Commun. 2004, 315, 525–531. [Google Scholar] [CrossRef]
- Saunders, M.A.; Good, J.M.; Lawrence, E.C.; Ferrell, R.E.; Li, W.H.; Nachman, M.W. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. Am. J. Hum. Genet. 2006, 79, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Thies, R.S.; Chen, T.; Davies, M.V.; Tomkinson, K.N.; Pearson, A.A.; Shakey, Q.A.; Wolfman, N.M. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 2001, 18, 251–259. [Google Scholar]
- Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 9306–9311. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ratovitski, T.; Brady, J.P.; Solomon, M.B.; Wells, K.D.; Wall, R.J. Expression of myostatin pro domain results in muscular transgenic mice. Mol. Reprod. Dev. 2001, 60, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Dobridge, J.; Hackney, A.C. Influence of estrogen on markers of muscle tissue damage following eccentric exercise. Fiziol. Cheloveka 2001, 27, 133–137. [Google Scholar] [PubMed]
- Minahan, C.; Joyce, S.; Bulmer, A.C.; Cronin, N.; Sabapathy, S. The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. Eur. J. Appl. Physiol. 2015, 115, 1493–1500. [Google Scholar] [CrossRef]
- Yamin, C.; Duarte, J.A.; Oliveira, J.M.; Amir, O.; Sagiv, M.; Eynon, N.; Sagiv, M.; Amir, R.E. IL6 (-174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur. J. Appl. Physiol. 2008, 104, 579–586. [Google Scholar] [CrossRef] [PubMed]
Variable | AA (n = 34, 72%) | AT (n = 13, 26%) |
---|---|---|
Age (years) | 25.0 ± 2.2 | 24.3 ± 2.1 |
Height (cm) | 177.1 ± 4.8 | 175.2 ± 6.8 |
Weight (kg) | 74.5 ± 7.7 | 70.7 ± 9.8 |
Body fat (%) | 16.8 ± 5.8 | 15.4 ± 4.0 |
Unit: % | Pre | Post | 24 h | 48 h | 72 h | 96 h | p |
---|---|---|---|---|---|---|---|
AA (n = 34) | 100 ± 0.0 | 43.6 ± 3.8 | 55.4 ± 4.6 | 59.0 ± 5.2 | 62.8 ± 5.8 | 74.0 ± 6.1 | 0.042 |
AT (n = 13) | 100 ± 0.0 | 55.4 ± 6.2 | 69.1 ± 7.5 | 76.1 ± 8.4 | 86.2 ± 9.4 * | 93.1 ± 9.8 |
Unit: mm | Pre | 24 h | 48 h | 72 h | 96 h | p |
---|---|---|---|---|---|---|
AA (n = 34) | 0 ± 0.0 | 35.7 ± 2.9 | 43.7 ± 2.7 | 37.1 ± 2.9 | 23.0 ± 2.5 | 0.379 |
AT (n = 13) | 0 ± 0.0 | 33.7 ± 4.8 | 41.7 ± 4.4 | 34.2 ± 4.7 | 26.4 ± 4.1 |
Unit: U/L | Pre | 24 h | 48 h | 72 h | 96 h | p |
---|---|---|---|---|---|---|
AA (n = 34) | 142.6 ± 19.0 | 1103.4 ± 579.6 | 3911.3 ± 1321.9 | 7854.5 ± 1785.6 | 9569.4 ± 1680.0 | 0.955 |
AT (n = 13) | 119.8 ± 30.7 | 883.8 ± 937.4 | 3354.2 ± 2137.8 | 8158.7 ± 2887.7 | 10868.5 ± 2716.9 |
Unit: U/L | Pre | 24 h | 48 h | 72 h | 96 h | P |
---|---|---|---|---|---|---|
AA (n = 34) | 29.1 ± 4.1 | 38.7 ± 6.3 | 78.6 ± 15.4 | 135.0 ± 22.2 | 181.0 ± 23.6 | 0.706 |
AT (n = 13) | 22.9 ± 6.6 | 32.6 ± 10.3 | 74.2 ± 24.9 | 162.4 ± 36.0 | 201.4 ± 28.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, K.; Lee, J. Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage. Int. J. Environ. Res. Public Health 2020, 17, 4900. https://doi.org/10.3390/ijerph17134900
Kim J, Park K, Lee J. Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage. International Journal of Environmental Research and Public Health. 2020; 17(13):4900. https://doi.org/10.3390/ijerph17134900
Chicago/Turabian StyleKim, Jooyoung, Kwanghoon Park, and Joohyung Lee. 2020. "Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage" International Journal of Environmental Research and Public Health 17, no. 13: 4900. https://doi.org/10.3390/ijerph17134900
APA StyleKim, J., Park, K., & Lee, J. (2020). Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage. International Journal of Environmental Research and Public Health, 17(13), 4900. https://doi.org/10.3390/ijerph17134900