Do Wildfires Cause Changes in Soil Quality in the Short Term?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Chemical Analyses
2.4. Biological Analyses
2.5. Soil Quality Index (SQI)
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: Cambridge, CA, USA, 2012. [Google Scholar]
- Memoli, V.; Panico, S.C.; Esposito, F.; Barile, R.; De Marco, A.; Maisto, G. Volcanic soil phytotoxicity in a burnt Mediterranean area. Catena 2019, 183, 104181. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Guénon, R.; Vennetier, M.; Dupuy, N.; Roussos, S.; Pailler, A.; Gros, R. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degrad. Dev. 2013, 24, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Hedo, J.; Lucas-Borja, M.E.; Wic, B.; Andrés Abellán, M.; De Las Heras, J. Experimental site and season over-control the effect of Pinus halepensis in microbial properties of soil under semiarid and dry conditions. J. Arid Environ. 2015, 116, 44–52. [Google Scholar] [CrossRef]
- Bodì, M.; Mataix-Solera, J.; Doerr, S.; Cerdà, A. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 2011, 160, 599–607. [Google Scholar] [CrossRef]
- Bodì, M.; Martin, D.A.; Santín, C.; Balfour, V.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar]
- Kong, J.; Yang, J.; Bai, E. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Sci. Total Environ. 2018, 642, 1353–1361. [Google Scholar] [CrossRef]
- Odigie, K.O.; Flegal, A.R. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest. PLoS ONE 2014, 9, e107835. [Google Scholar] [CrossRef] [PubMed]
- Stankov Jovanovic, V.P.; Ilic, M.D.; Markovic, M.S.; Mitic, V.D.; Nikolic Mandic, S.D.; Stojanovic, G.S. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere 2011, 84, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Dowling, K.; Florentine, S. The Unquantified Risk of Post-Fire Metal Concentration in Soil: A Review. Water Air Soil Pollut. 2017, 228, 175. [Google Scholar] [CrossRef]
- Zavala, L.M.; de Celis, R.; Jordán, A. How wildfires affect soil properties. A brief review. Cuad. Investig. Geográfica 2014, 40, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.; Rutigliano, F.A.; De Marco, A.; Castaldi, S.; Virzo, A. Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland. Int. J. Wildland Fire 2007, 16, 573–583. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Migliorini, M.; Maggi, O.; D’Ascoli, R.; Fanciulli, P.P.; Persiani, A.M. Dynamics of fungi and fungivorous microarthropods in a Mediterranean maquis soil affected by experimental fire. Eur. J. Soil Biol. 2013, 56, 33–43. [Google Scholar] [CrossRef]
- Rodríguez, J.; González-Pérez, J.A.; Turmero, A.; Hernández, M.; Ball, A.S.; González-Vila, F.J.; Arias, M.E. Physico-chemical and microbial perturbations of Andalusian pine forest soils following a wildfire. Sci. Total Environ. 2018, 634, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Bárcenas-Moreno, G.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.; Baath, E. Soil microbial recolonisation after a fire in a Mediterranean forest. Biol. Fertil. Soils 2011, 47, 261–272. [Google Scholar] [CrossRef]
- Caldwell, B.A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 2005, 49, 637–644. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P. Forest Fire Effects on Soil Microbiology. In Fire Effects on Soils and Restoration Strategies; Cerda, A., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 133–175. [Google Scholar]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Panico, S.C.; De Marco, A.; Barile, R.; Maisto, G. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas. Sci. Total Environ. 2018, 636, 1099–1108. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Martínez-Vilalta, J.; Lloret, F.; Álvarez, A.; Ávila, A.; Bonet, F.J.; Brotons, L.; Castro, J.; Curiel Yuste, J.; Díaz, M.; et al. Reassessing global change research priorities in Mediterranean terrestrial ecosystems: How far have we come and where do we go from here? Global Ecol. Biogeogr. 2015, 24, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H.; Gilligan, C.A.; Hollingworth, K.; Kleczkowski, A.; Twyman, R.M.; Pitchford, J.W. Biodiversity and ecosystem function in soil. Funct. Ecol. 2005, 19, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Leitgib, L.; Kálmán, J.; Gruiz, K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 2007, 66, 428–434. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, F.; Maisto, G.; Alfani, A. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. Sci. Total Environ. 2003, 311, 191–203. [Google Scholar] [CrossRef]
- De Marco, A.; Esposito, F.; Berg, B.; Giordano, M.; Virzo De Santo, A. Soil C and N sequestration in organic and mineral layers of two coeval forest stands implanted on pyroclastic material (Mount Vesuvius, South Italy). Geoderma 2013, 209–210, 128–135. [Google Scholar] [CrossRef]
- Santorufo, L.; Cortet, J.; Nahmani, J.; Pernin, C.; Salmon, S.; Pernot, A.; Morel, J.L.; Maisto, G. Responses of functional and taxonomic collembolan community structure to site management in Mediterranean urban and surrounding areas. Eur. J. Soil Biol. 2015, 70, 46–57. [Google Scholar] [CrossRef]
- Di Gennaro, A. Gestione e conservazione della risorsa suolo nelle aree periurbane. Un caso studio: l’area metropolitana di Napoli. Mem. Descr. Carta Geol. D’It. 1999, 54, 187–192. (In Italian) [Google Scholar]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting Burn Severity across Mediterranean Forest Types by Coupling Medium-Spatial Resolution Satellite Imagery and Field Data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Ge, G.; Li, Z.; Fan, F.; Chu, G.; Hou, Z.; Liang, Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2010, 326, 31–44. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.M.; Davidson, C.M.; Gomez, A.; Lück, D.; Bacon, J.; et al. Application of a modified BCR sequential extraction (three step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monitor. 2000, 2, 228–233. [Google Scholar]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Santorufo, L.; De Marco, A.; Barile, R.; Maisto, G. Total and fraction content of elements in volcanic soil: Natural or anthropogenic derivation. Sci. Total Environ. 2018, 625, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.H.; Domsch, K.H. A physiological method for the quantitative measurements of microbial biomass in soil. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Killham, K. Soil Ecology; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystem; Blackwell Scientific Publications: Oxford, UK, 1979. [Google Scholar]
- Sundman, V.; Sivela, S. A comment on the membrane filter technique for the estimation of length of fungal hyphae in soil. Soil Biol. Biochem. 1978, 10, 399–401. [Google Scholar] [CrossRef]
- Olson, F.C.W. Quantitative estimates of filamentous algae. Trans. Am. Microsc. Soc. 1950, 69, 272–279. [Google Scholar] [CrossRef]
- Froment, A. Soil respiration in a mixed oak forest. Oikos 1972, 23, 273–277. [Google Scholar] [CrossRef]
- Memoli, V.; De Marco, A.; Esposito, F.; Panico, S.C.; Barile, R.; Maisto, G. Seasonality, altitude and human activities control soil quality in a national park surrounded by an urban area. Geoderma 2019, 337, 1–10. [Google Scholar] [CrossRef]
- Marzaioli, R.; D’Ascoli, R.; De Pascale, R.A.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to differentland use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1942–1962. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Shen, J.; Li, S.; He, P.; Liang, G. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Till. Res. 2014, 140, 74–81. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Raiesi, F.; Kabiri, V. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecol. Ind. 2016, 71, 198–207. [Google Scholar] [CrossRef]
- Glasspool, I.J.; Edwards, D.; Aze, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 2004, 32, 381–383. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon management and climate change. Carbon Manag. 2013, 4, 439–462. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Palviainen, M.; Pumpanen, J.; Berninger, F.; Ritala, K.; Duan, B.; Heinonsalo, J.; Sun, H.; Köster, E.; Köster, K. Nitrogen balance along a northern boreal forest fire chronosequence. PLoS ONE 2017, 12, e0174720. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.; Jiménez-Pinilla, P.; Mataix-Solera, J.; Arcenegui, V.; Bárcenas, G.M.; González-Pérez, J.A.; García-Orenes, F.; Torres, M.P.; Mataix-Beneyto, J. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 2013, 207–208, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Jordán, A.; Zavala, L.M.; Mataix-Solera, J.; Doerr, S.H. Soil water repellency: Origin, assessment and geomorphological consequences. Catena 2013, 108, 1–5. [Google Scholar] [CrossRef]
- Vadilonga, T.; Úbeda, X.; Germann, P.F.; Lorca, M. Effects of prescribed burnings on soil hydrological parameters. Hydrol. Process. 2008, 22, 4249–4256. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Burton, C.A.; Hoefen, T.M.; Plumlee, G.S.; Baumberger, K.L.; Backlin, A.R.; Gallegos, E.; Fisher, R.N. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California. PLoS ONE 2016, 11, e0153372. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill as revealed by dendrochronological and isotopic analyses. Forest Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat. Areasj. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Shakesby, R.A.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D.; Stoof, C.R.; Urbanek, E.; Walsh, R.P.D. Impacts of prescribed fire on soil loss and soil quality: An assessment based on experimentally-burned catchment in Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Úbeda, X.; Lorca, M.; Outeiro, L.; Bernia, S.; Castellnou, M. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int. J. Wildland Fire 2005, 14, 379–384. [Google Scholar] [CrossRef]
- Esque, T.C.; Kaye, J.P.; Eckert, S.E.; De Falco, L.A.; Tracy, C.R. Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland. Oecologia 2010, 164, 253–263. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Rubio, J.L. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur. J. Soil Sci. 2010, 51, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Vingiani, S.; Scarciglia, F.; Mileti, F.A.; Donato, P.; Terribile, F. Occurrence and origin of soils with andic properties in Calabria (southern Italy). Geoderma 2014, 232–234, 500–516. [Google Scholar] [CrossRef]
- Hart, S.C.; DeLuca, T.H.; Newman, G.S.; MacKenzie, M.D.; Boyle, S.I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 2005, 220, 166–184. [Google Scholar] [CrossRef]
- Bowker, M.A.; Belnap, J.; Rosentreter, R.; Graham, B. Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies. USA. Appl. Soil Ecol. 2004, 26, 41–52. [Google Scholar] [CrossRef]
- Vázquez, F.J.; Acea, M.J.; Carballas, T. Soil microbial population after wildfire. Fems Microbiol. Ecol. 1993, 13, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.A.; Chowdhury, S.; Schlager, V.; Oliver, A.; Puissant, J.; Vazquez, P.G.M.; Jehmlich, N.; von Bergen, M.; Griffiths, R.I.; Gleixner, G. Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon Cycling. Front. Microbiol. 2016, 7, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Chen, C.R.; Hughes, J.M.; Wang, W.J.; Lewis, T. Temporal changes rather than long-term repeated burning predominately control the shift in the abundance of soil denitrifying community in an Australian sclerophyll forest. Microb. Ecol. 2017, 73, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. Fems Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, B.W.; Kolb, T.E.; Hart, S.C.; Kaye, J.P.; Hungate, B.A.; Dore, S.; Montes-Helu, M. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry 2011, 104, 251–265. [Google Scholar] [CrossRef]
- Fuentes-Ramirez, A.; Barrientos, M.; Almonacid, L.; Arriagada-Escamilla, C.; Salas-Eljatibc, C. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Appl. Soil Ecol. 2018, 131, 99–106. [Google Scholar] [CrossRef]
- González-Romero, J.; Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Sagra, J.; Moya, D.; De Las Heras, J. Temporal effects of post-fire check dam construction on soil functionality in SE Spain. Sci. Total Environ. 2018, 642, 117–124. [Google Scholar] [CrossRef] [PubMed]
OM (% d.w.) | C (% d.w.) | N (% d.w.) | WC (% d.w.) | pH | |
---|---|---|---|---|---|
BF | 7.53 * | 5.46 * | 0.43 | 45.2 * | 7.11 * |
(±0.03) | (±0.13) | (±0.13) | (±19.1) | (±0.20) | |
AF | 4.82 | 2.89 | 0.23 | 17.0 | 7.42 |
(±0.49) | (±0.60) | (±0.05) | (±2.30) | (±0.11) |
Element | Soil | F1 | F2 | F3 | F4 | Pseudo-Total |
---|---|---|---|---|---|---|
Al | BF | 401 * B | 783 AB | 3901 * AB | 11968 A | 17053 |
(±78.4) | (±206) | (±917) | (±1457) | (±1681) | ||
AF | 612 B | 916 AB | 1739 AB | 1,405 A | 15671 | |
(±115) | (±75.0) | (±244) | (±2500) | (±2643) | ||
Ca | BF | 2708 *AB | 1241 B | 2122 * AB | 6161 *A | 1,232 |
(±547) | (±411) | (±40.9) | (±394) | (±616) | ||
AF | 1619 AB | 961 B | 1361 AB | 8634 A | 12575 | |
(±266) | (±119) | (±250) | (±1598) | (±1858) | ||
Cr | BF | 0.02 * B | 0.00 * B | 0.65 * AB | 1.16 A | 1.83 |
(±0.01) | (±0.00) | (±0.35) | (±0.19) | (±0.52) | ||
AF | 0.01 B | 0.11 AB | 0.16 AB | 0.91 A | 1.17 | |
(±0.00) | (±0.01) | (±0.01) | (±0.24) | (±0.24) | ||
Cu | BF | 0.98 B | 0.28* B | 17.6 * A | 12.1 A | 30.93 |
(±0.40) | (±0.14) | (±2.61) | (±1.04) | (±2.51) | ||
AF | 1.44 B | 0.68 B | 3.90 B | 27.6 A | 33.62 | |
(±0.25) | (±0.06) | (±0.43) | (±12.1) | (±12.1) | ||
Fe | BF | 91.0 C | 594 BC | 1290 AB | 7509 A | 9483 |
(±41.0) | (±192) | (±516) | (±753) | (±634) | ||
AF | 145 C | 609 BC | 927 AB | 7268 A | 8494 | |
(±97.4) | (±100) | (±188) | (±1211) | (±1063) | ||
K | BF | 387 * BC | 146 C | 808 * B | 10843 * A | 12184 * |
(±50.8) | (±27.7) | (±181) | (±1089) | (±1027) | ||
AF | 242 B | 150 B | 380 B | 14,211 A | 14982 | |
(±27.9) | (±18.4) | (±55.3) | (±1707) | (±1713) | ||
Mg | BF | 420 * A | 97.5 B | 441 A | 2567 A | 3525 |
(±137) | (±36.3) | (±161) | (±222) | (±364) | ||
AF | 208 B | 129 B | 256 B | 2576 A | 3169 | |
(±8.77) | (±22.5) | (±42.1) | (±378) | (±402) | ||
Mn | BF | 59.3 A | 47.1* A | 30.9 * A | 147 A | 284 |
(±27.7) | (±24.0) | (±7.65) | (±14.0) | (±55.2) | ||
AF | 54.1 AB | 20.5 B | 12.5 B | 233 A | 320 | |
(±17.0) | (±4.20) | (±3.47) | (±114) | (±115) | ||
Pb | BF | 0.47 B | 4.61 AB | 14.9 A | 3.65 * AB | 23.6 * |
(±0.13) | (±1.69) | (±7.31) | (±0.40) | (±8.95) | ||
AF | 0.53 B | 4.70 AB | 12.9 AB | 66.7 A | 84.8 | |
(±0.05) | (±0.94) | (±2.74) | (±6.15) | (±12.5) | ||
V | BF | 0.28 C | 1.37 BC | 9.67 * B | 25.2 * A | 36.5 |
(±0.08) | (±0.17) | (±1.97) | (±2.63) | (±1.99) | ||
AF | 0.34 B | 1.45 B | 20.4 A | 15.3 A | 37.49 | |
(±0.13) | (±0.12) | (±2.20) | (±3.49) | (±2.41) |
BF | AF |
---|---|
F1 | |
Cfung/Cmic = 0.0238 − (0.0000247 Al) + (0.0445 Cr) − (0.00458 Cu) | Cfung/Cmic = 0.0285 − (0.000000647 Al) − (3.068 Cr) − (0.000162 Cu) |
Resp = 0.515 − (0.000533 Al) + (10.161 Cr) − (0.275 Cu) | Resp = 1.078 + (0.000206 Al) − (99.745 Cr) − (0.369 Cu) |
HA = 5.203 − (0.00264 Al) + (91.802 Cr) − (2.063 Cu) | HA =−130.675 − (0.0407 Al) + (15667.992 Cr) + (53.415 Cu) |
DHA = 0.583 − (0.000791 Al) + (3.989 Cr) − (0.153 Cu) | DHA = 0.267 − (0.00000946 Al) − (21.625 Cr) − (0.0814 Cu) |
F2 | |
Cfung/Cmic = 0.173 − (0.000293 Al) + (20.621 Cr) + (0.0107 Cu) | Cfung/Cmic = 0.0217 + (0.0588 Cr) − (0.00832 Cu) − (0.00259 Pb) |
Resp = −0.0883 + (0.000438 Al) + (6.453 Cr) − (0.100 Cu) | Resp = 0.346 − (0.000167 Al) − (3.448 Cr) + (0.389 Cu) |
HA = −14.555 + (0.0318 Al) − (1890.699 Cr) − (1.690 Cu) | HA = −15.093 + (0.0333 Al) + (579.982 Cr) − (94.778 Cu) |
DHA = 4.527 − (0.00788 Al) + (564.029 Cr) + (0.393 Cu) | DHA = 0.152 − (0.0000438 Al) − (0.470 Cr) − (0.0656 Cu) |
F3 | |
Cfung/Cmic = 0.00929 + (0.00000292 Al) + (0.00164 Cr) − (0.000650 Cu) | Cfung/Cmic = 0.0639 − (0.0000215 Al) + (0.323 Cr) − (0.0171 Cu) |
Resp = 0.350 −(0.000180 Al) + (0.762 Cr) + (0.00601 Cu) | Resp = 0.875 − (0.000199 Al) − (1.006 Cr) − (0.0719 Cu) |
HA = 4.808 − (0.00188 Al) + (6.711 Cr) + (0.128 Cu) | HA = −139.128 + (0.0436 Al) − (194.563 Cr) + (27.220 Cu) |
DHA = 0.0453 + (0.0000759 Al) + (0.0989 Cr) − (0.0117 Cu) | DHA = 0.103 − (0.0000118 Al) − (1.285 Cr) + (0.0347 Cu) |
pH, WC, C, N, OM and sum of the element available fractions | |
Cfung/Cmic = −0.0133 + (0.0000106 Al) − (0.0216 Cr) − (0.000852 Cu) | Cfung/Cmic = −0.0620 + (0.0000123 Al) − (0.254 Cr) + (0.0165 Cu) |
Resp = 1.349 − (0.000503 Al) + (1.725 Cr) + (0.0157 Cu) | Resp = −0.0823 + (0.0000740 Al) − (3.125 Cr) + (0.127 Cu) |
HA = 15.968 − (0.00553 Al) + (17.623 Cr) + (0.232 Cu) | HA = 113.533 − (0.0249 Al) + (663.068 Cr) − (32.653 Cu) |
DHA = −0.490 + (0.000260 Al) − (0.454 Cr) − (0.0173 Cu) | DHA = 0.217 − (0.0000302 Al) − (0.128 Cr) − (0.0110 Cu) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memoli, V.; Panico, S.C.; Santorufo, L.; Barile, R.; Di Natale, G.; Di Nunzio, A.; Toscanesi, M.; Trifuoggi, M.; De Marco, A.; Maisto, G. Do Wildfires Cause Changes in Soil Quality in the Short Term? Int. J. Environ. Res. Public Health 2020, 17, 5343. https://doi.org/10.3390/ijerph17155343
Memoli V, Panico SC, Santorufo L, Barile R, Di Natale G, Di Nunzio A, Toscanesi M, Trifuoggi M, De Marco A, Maisto G. Do Wildfires Cause Changes in Soil Quality in the Short Term? International Journal of Environmental Research and Public Health. 2020; 17(15):5343. https://doi.org/10.3390/ijerph17155343
Chicago/Turabian StyleMemoli, Valeria, Speranza Claudia Panico, Lucia Santorufo, Rossella Barile, Gabriella Di Natale, Aldo Di Nunzio, Maria Toscanesi, Marco Trifuoggi, Anna De Marco, and Giulia Maisto. 2020. "Do Wildfires Cause Changes in Soil Quality in the Short Term?" International Journal of Environmental Research and Public Health 17, no. 15: 5343. https://doi.org/10.3390/ijerph17155343
APA StyleMemoli, V., Panico, S. C., Santorufo, L., Barile, R., Di Natale, G., Di Nunzio, A., Toscanesi, M., Trifuoggi, M., De Marco, A., & Maisto, G. (2020). Do Wildfires Cause Changes in Soil Quality in the Short Term? International Journal of Environmental Research and Public Health, 17(15), 5343. https://doi.org/10.3390/ijerph17155343