Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Laboratory Simulation Experiment
2.2. Soil Property Measurement
2.3. DNA Extraction, Sequencing, and Data Preprocessing
3. Results and Discussion
3.1. Migration and Occurrence of Cr Fractions in Red Soil with Time and Space Distribution
3.2. Relationships between Four Fractions of Cr and Soil Properties
3.3. Correlation between the Microbial Community and Environmental Factor
3.4. Soil Microbial Community Composition and Diversity
3.5. Correlation between the Microbial Communities and Migration of Four Cr Fractions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reddy, K.R.; Parupudi, U.S.; Devulapalli, S.N.; Xu, C.Y. Effects of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater. 1997, 55, 135–158. [Google Scholar] [CrossRef]
- Rai, U.N.; Dwivedi, S.; Tripathi, R.D.; Shukla, O.P.; Singh, N.K. Algal biomass: An economical method for removal of chromium from tannery effluent. Bull. Environ. Contam. Toxicol. 2005, 75, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Meng, D.-L.; Liu, X.-D.; Liang, Y.-L.; Yin, H.-Q.; Liu, H.-W. Response of soil fungal community to long-term chromium contamination. Trans. Nonferrous Met. Soc. China 2018, 28, 1838–1846. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, Y.; Wang, Y.; Wu, Z.; Xie, S.; Liu, Y. Distribution of bacterial communities across plateau freshwater lake and upslope soils. J. Environ. Sci. (China) 2016, 43, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Peng, B.; Yang, Z.-H.; Chai, L.-Y.; Xu, Y.-Z.; Su, C.-Q. Spatial distribution of chromium in soils contaminated by chromium-containing slag. Trans. Nonferrous Met. Soc. China 2009, 19, 756–764. [Google Scholar] [CrossRef]
- Adam, V.; Quaranta, G.; Loyaux-Lawniczak, S. Terrestrial and aquatic ecotoxicity assessment of Cr (VI) by the ReCiPe method calculation (LCIA): Application on an old industrial contaminated site. Environ. Sci. Pollut. Res. Int. 2013, 20, 3312–3321. [Google Scholar] [CrossRef]
- Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Shi, W.Y.; Shao, H.B.; Li, H.; Shao, M.A.; Du, S. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater. 2009, 170, 1–6. [Google Scholar] [CrossRef]
- Liao, Y.; Min, X.; Yang, Z.; Chai, L.; Liao, Q.; Wu, B. Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater. J. Soils Sediments 2014, 14, 1098–1106. [Google Scholar] [CrossRef]
- Desai, C.; Parikh, R.Y.; Vaishnav, T.; Shouche, Y.S.; Madamwar, D. Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res. Microbiol. 2009, 160, 1–9. [Google Scholar] [CrossRef]
- Unceta, N.; Seby, F.; Malherbe, J.; Donard, O.F. Chromium speciation in solid matrices and regulation: A review. Anal. Bioanal. Chem. 2010, 397, 1097–1111. [Google Scholar] [CrossRef]
- Chai, L.Y.; He, D.W.; Yu, X.; Liu, H.; Min, X.B.; Chen, W.L. Technological progress on detoxification and comprehensive util ization of chromium containing slag. Trans. Nonferrous Met. Soc. China 2002, 12, 514–518. [Google Scholar]
- Wang, Y.; Yang, Z.; Chai, L.; Zhao, K. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification. J. Hazard. Mater. 2009, 169, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M.A. Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost. Chemosphere 2005, 60, 1481–1486. [Google Scholar] [CrossRef]
- Barrera-Diaz, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, M.; Jalali, M. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste. J. Hazard. Mater. 2015, 297, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dou, J.; Xu, H. Remediation of Cr (VI)-contaminated soil with co-composting of three different biomass solid wastes. J. Soils Sediments 2017, 3, 897–905. [Google Scholar] [CrossRef]
- Li, Z.-W.; Zeng, G.-M.; Zhang, H.; Yang, B.; Jiao, S. The integrated eco-environment assessment of the red soil hilly region based on GIS—A case study in Changsha City, China. Ecol. Model. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, G.; Du, C.; Huang, D.; Tang, L.; Wang, L.; Shen, G. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. J. Hazard. Mater. 2010, 181, 211–216. [Google Scholar] [CrossRef]
- He, Z.; Hu, Y.; Yin, Z.; Hu, Y.; Zhong, H. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria. Environ. Manag. 2016, 57, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Sheik, C.S.; Mitchell, T.W.; Rizvi, F.Z.; Rehman, Y.; Faisal, M.; Hasnain, S.; McInerney, M.J.; Krumholz, L.R. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 2012, 7, e40059. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Q.; Tian, T.; Li, D.; Cheng, G.; Mu, J.; Wu, Q.; Niu, F.; Stegen, J.C.; An, L.; et al. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China. PLoS ONE 2015, 10, e0145747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagova-Mareckova, M.; Zadorova, T.; Penizek, V.; Omelka, M.; Tejnecky, V.; Pruchova, P.; Chuman, T.; Drabek, O.; Buresova, A.; Vanek, A. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol. Biochem. 2016, 101, 65–73. [Google Scholar] [CrossRef]
- Li, B.; Bao, Y.; Xu, Y.; Xie, S.; Huang, J. Vertical distribution of microbial communities in soils contaminated by chromium and perfluoroalkyl substances. Sci. Total. Environ. 2017, 599–600, 156–164. [Google Scholar] [CrossRef]
- Mabrouk, M.E.; Arayes, M.A.; Sabry, S.A. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. Biotechnol. Biotechnol. Equip. 2014, 28, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Dasgupta, M.; Chakraborty, B. Removal of Chromium (VI) by Bacillus subtilis Isolated from East Calcutta Wetlands, West Bengal, India. Int. J. Biosci. Biochem. Bioinform. 2014, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Li, C.; Wang, P.; Huang, G.; Li, Z.; Han, Z. Soil Pollution Characteristics and Microbial Responses in a Vertical Profile with Long-Term Tannery Sludge Contamination in Hebei, China. Int. J. Environ. Res. Public Health 2019, 16, 563. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, S.; Dash, D.; Samantaray, D.P. Exploration of NPK Activity Showing Chromium Resistant Bacteria from Sukinda Mining Area. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 535–542. [Google Scholar] [CrossRef]
- Davidson, C.M.; Duncan, A.L.; Littlejohn, D.; Ure, A.M.; Garden, L.M. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal. Chim. Acta 1998, 363, 45–55. [Google Scholar] [CrossRef]
- Rauret, G.; L’opez-S’anchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xu, C.Y.; Chinthamreddy, S. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. J. Hazard. Mater. 2001, 84, 279–296. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, X.; Yao, T.; Hua, M.; Wang, X.; Rao, Z.; He, X. Variation of delta (18) O in precipitation and its response to upstream atmospheric convection and rainout: A case study of Changsha station, south-central China. Sci. Total. Environ. 2019, 659, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Tong, J.; Liu, Y.; Hu, B.X.; Yang, J.; Zhou, H. Experimental and modeling study on Cr(VI) transfer from soil into surface runoff. Stoch. Environ. Res. Risk Assess. 2015, 30, 1347–1361. [Google Scholar] [CrossRef]
- Tong, J.-X.; Yang, J.-Z.; Hu, B.X.; Bao, R.-C. Experimental study and mathematical modelling of soluble chemical transfer from unsaturated/saturated soil to surface runoff. Hydrol. Process. 2010, 24, 3065–3073. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, L.; Xu, L.; Hao, X.; Zhang, S.; Xu, M.; Zhu, P.; Fu, S.; Liang, Y.; Yin, H.; et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicol. Environ. Saf. 2019, 171, 281–289. [Google Scholar] [CrossRef]
- Lu, R.-K. Soil and Agro-Chemistry Analytical Methods; Agriculture Science and Technology Press of China: Beijing, China, 1999; Volume 15, pp. 223–227. [Google Scholar]
- Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 2011, 98, 152–153. [Google Scholar] [CrossRef] [Green Version]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, S.; Shan, X.-Q. Time effect on the fractionation of heavy metals in soils. Geoderma 2005, 125, 225–234. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Lu, Y.; Su, S.; Bai, L.; Li, L.; Wu, C. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. Environ. Pollut. 2015, 207, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Gleyzes, C.; Tellier, S.; Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends Anal. Chem. 2002, 21, 451–467. [Google Scholar] [CrossRef]
- Jalali, M.; Khanlari, Z.V. Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 2008, 143, 26–40. [Google Scholar] [CrossRef]
- Leli, N.K. Speciation of chromium in 12 agricultural soils from Turkey. Chemosphere 2004, 57, 1473–1478. [Google Scholar] [CrossRef]
- Appel, T. Non-biomass soil organic N—The substrate forNmineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biol. Biochem. 1988, 30, 1445–1456. [Google Scholar] [CrossRef]
- Gramss, G.; Voigt, K.-D.; Bergmann, H. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil. J. Plant Nutr. Soil Sci. 2004, 167, 417–427. [Google Scholar] [CrossRef]
- Aceves, M.B.; Santos, H.E.; Berber, J.D.; Mota, J.L.; Vazquez, R.R. Distribution and mobility of Cr in tannery waste amended semi-arid soils under simulated rainfall. J. Hazard. Mater. 2009, 171, 851–858. [Google Scholar] [CrossRef]
- Dheeba, B.; Sampathkumar, P.; Kannan, K. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity. J. Toxicol. 2015, 2015, 367217. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Si, Y.; Xing, Y.; Li, Y. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ. Sci. Pollut. Res. Int. 2015, 22, 10788–10799. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, P.; Del Real, A.E.P.; Lobo, M.C.; Perez-Sanz, A. Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. Environ. Sci. Pollut. Res. Int. 2017, 24, 25713–25724. [Google Scholar] [CrossRef]
- Brito, E.M.; Pinon-Castillo, H.A.; Guyoneaud, R.; Caretta, C.A.; Gutierrez-Corona, J.F.; Duran, R.; Reyna-Lopez, G.E.; Nevarez-Moorillon, G.V.; Fahy, A.; Goni-Urriza, M. Bacterial biodiversity from anthropogenic extreme environments: A hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl. Microbiol. Biotechnol. 2013, 97, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, Y.; Wang, Y.; Luo, X.; Dai, J.; Fang, C. Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int. J. Syst. Evol. Microbiol. 2011, 61, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kasemodel, M.C.; Sakamoto, I.K.; Varesche, M.B.A.; Rodrigues, V.G.S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Sci. Total. Environ. 2019, 675, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, X.D.; Zhao, Y.H.; Wang, L.; Zhang, C.Y. Soil microbial community structure in the rhizosphere of Robinia pseudoacacia L. seedlings exposed to elevated air temperature and cadmium-contaminated soils for 4years. Sci. Total. Environ. 2019, 650, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- An, F.-Q.; Lü, J.-L.; Diao, Z. Influence of lead on bacterial community composition in Lou soil. J. Agro-Environ. Sci. 2018, 37, 268–275. [Google Scholar] [CrossRef]
- Wu, Y.H.; Cheng, H.; Zhou, P.; Huo, Y.Y.; Wang, C.S.; Xu, X.W. Complete genome sequence of the heavy metal resistant bacterium Altererythrobacter atlanticus 26DY36(T), isolated from deep-sea sediment of the North Atlantic Mid-ocean ridge. Mar. Genom. 2015, 24, 289–292. [Google Scholar] [CrossRef]
Time | Fractions | Properties | |||||
---|---|---|---|---|---|---|---|
OM | TP | AK | NH3-N | NO3-N | pH | ||
30 d | AC | 1 ** | n.s. | n.s. | 0997 * | −0997 * | n.s. |
RED | 1 ** | n.s. | n.s. | 0995 * | −0995 * | n.s. | |
OX | 1 * | n.s. | n.s. | n.s. | n.s. | n.s. | |
RES | n.s. | n.s. | 0.995 * | n.s. | n.s. | n.s. | |
60 d | AC | 099 * | 0.991 * | n.s. | 1 *** | n.s. | n.s. |
RED | 0991* | 0.993 * | n.s. | 1 ** | n.s. | n.s. | |
OX | 0991* | 0.995 * | n.s. | 1 ** | n.s. | n.s. | |
RES | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
90 d | AC | n.s. | n.s. | n.s. | n.s. | n.s. | 0.992 * |
RED | n.s. | n.s. | n.s. | n.s. | n.s. | 0.993 * | |
OX | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
RES | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hao, X.; Tang, J.; Hu, J.; Deng, Y.; Xu, M.; Zhu, P.; Tao, J.; Liang, Y.; Yin, H.; et al. Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms. Int. J. Environ. Res. Public Health 2020, 17, 2835. https://doi.org/10.3390/ijerph17082835
Zhang S, Hao X, Tang J, Hu J, Deng Y, Xu M, Zhu P, Tao J, Liang Y, Yin H, et al. Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms. International Journal of Environmental Research and Public Health. 2020; 17(8):2835. https://doi.org/10.3390/ijerph17082835
Chicago/Turabian StyleZhang, Siyuan, Xiaodong Hao, Jiahui Tang, Jin Hu, Yan Deng, Menglong Xu, Ping Zhu, Jiemeng Tao, Yili Liang, Huaqun Yin, and et al. 2020. "Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms" International Journal of Environmental Research and Public Health 17, no. 8: 2835. https://doi.org/10.3390/ijerph17082835
APA StyleZhang, S., Hao, X., Tang, J., Hu, J., Deng, Y., Xu, M., Zhu, P., Tao, J., Liang, Y., Yin, H., Jiang, L., Liu, X., & Liu, H. (2020). Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms. International Journal of Environmental Research and Public Health, 17(8), 2835. https://doi.org/10.3390/ijerph17082835