FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection and Specimen Collection
2.2. Genomic DNA Extraction and EGFR Gene Sequencing
2.3. Genotyping of FGFR4 Polymorphisms
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Genotype Distributions of FGFR4 Polymorphisms in Patients with Lung Adenocarcinoma
3.3. Associations between FGFR4 SNPs rs2011077 and rs351855 and Distant Metastasis among Lung Adenocarcinoma Patients with the Wild-Type EGFR Gene
3.4. Clinical Relevance of FGFR4 Levels in Lung Adenocarcinoma Patients with the Wild-Type EGFR Gene Obtained from the Cancer Genome Atlas (TCGA) Databases
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.H.; Tseng, C.H.; Chiang, C.J.; Hsu, K.H.; Tseng, J.S.; Chen, K.C.; Wang, C.L.; Chen, C.Y.; Yen, S.H.; Chiu, C.H.; et al. Characteristics of young lung cancer: Analysis of Taiwan's nationwide lung cancer registry focusing on epidermal growth factor receptor mutation and smoking status. Oncotarget 2016, 7, 46628–46635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.Y.; Yang, T.Y.; Chen, K.C.; Li, Y.J.; Hsu, K.H.; Tsai, C.R.; Chen, C.Y.; Hsu, C.P.; Hsia, J.Y.; Chuang, C.Y.; et al. EGFR l858r mutation and polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. Clin. Cancer Res. 2011, 17, 2149–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Au, J.S.; Thongprasert, S.; Srinivasan, S.; Tsai, C.M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.C. A prospective, molecular epidemiology study of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (pioneer). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Choi, Y.L.; Gong, Z.; Liu, X.; Lira, M.; Kan, Z.; Oh, E.; Wang, J.; Ting, J.C.; Ye, X.; et al. Comprehensive characterization of oncogenic drivers in asian lung adenocarcinoma. J. Thorac. Oncol. 2016, 11, 2129–2140. [Google Scholar] [CrossRef] [Green Version]
- Babina, I.S.; Turner, N.C. Advances and challenges in targeting fgfr signalling in cancer. Nat. Rev. Cancer 2017, 17, 318–332. [Google Scholar] [CrossRef]
- Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRS) signaling in human cancers. Apoptosis 2013, 18, 1447–1468. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [Green Version]
- Quintanal-Villalonga, A.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. A patent review of FGFR4 selective inhibition in cancer (2007–2018). Expert Opin. Ther. Pat. 2019, 29, 429–438. [Google Scholar] [CrossRef]
- Lang, L.; Teng, Y. Fibroblast growth factor receptor 4 targeting in cancer: New insights into mechanisms and therapeutic strategies. Cells 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Tsuchiya, N.; Yuasa, T.; Inoue, T.; Kumazawa, T.; Narita, S.; Horikawa, Y.; Tsuruta, H.; Obara, T.; Saito, M.; et al. Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a Japanese population. Int. J. Cancer 2008, 123, 2574–2579. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, L.M.; Karlins, E.; Karyadi, D.M.; Kwon, E.M.; Koopmeiners, J.S.; Stanford, J.L.; Ostrander, E.A. Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatic Dis. 2009, 12, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, E.; Ihrler, S.; Gires, O.; Streit, S.; Issing, W.; Bergmann, C. Fibroblast growth factor receptor 4 single nucleotide polymorphism gly388arg in head and neck carcinomas. World J. Clin. Oncol. 2019, 10, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Farnebo, L.; Tiefenbock, K.; Ansell, A.; Thunell, L.K.; Garvin, S.; Roberg, K. Strong expression of survivin is associated with positive response to radiotherapy and improved overall survival in head and neck squamous cell carcinoma patients. Int. J. Cancer 2013, 133, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; You, Z.; Sun, S.; Wang, Y.; Zhang, X.; Pang, D.; Jiang, Y. Prognostic implications of fibroblast growth factor receptor 4 polymorphisms in primary breast cancer. Mol. Carcinog. 2018, 57, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, H.; Zhang, L.; Li, H.; Shao, J.; Chen, H.; Zhong, M.; Shi, X.; Ye, T.; Li, Q. Effects of FGFR gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. BMC Cancer 2018, 18, 1038. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Sun, S.; Wei, W.; Ren, Y.; Liu, J.; Pang, D. Association of FGFR3 and FGFR4 gene polymorphisms with breast cancer in chinese women of heilongjiang province. Oncotarget 2015, 6, 34023–34029. [Google Scholar] [CrossRef] [Green Version]
- Marme, F.; Werft, W.; Benner, A.; Burwinkel, B.; Sinn, P.; Sohn, C.; Lichter, P.; Hahn, M.; Schneeweiss, A. FGFR4 arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann. Oncol. 2010, 21, 1636–1642. [Google Scholar] [CrossRef]
- Thussbas, C.; Nahrig, J.; Streit, S.; Bange, J.; Kriner, M.; Kates, R.; Ulm, K.; Kiechle, M.; Hoefler, H.; Ullrich, A.; et al. FGFR4 arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J. Clin. Oncol. 2006, 24, 3747–3755. [Google Scholar] [CrossRef]
- Marme, F.; Hielscher, T.; Hug, S.; Bondong, S.; Zeillinger, R.; Castillo-Tong, D.C.; Sehouli, J.; Braicu, I.; Vergote, I.; Isabella, C.; et al. Fibroblast growth factor receptor 4 gene (FGFR4) 388arg allele predicts prolonged survival and platinum sensitivity in advanced ovarian cancer. Int. J. Cancer 2012, 131, E586–E591. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Lu, M.; An, Y.; Li, R.; Chen, Y.; Lu, D.-R.; Jin, L.; Zhou, W.-P.; Qian, J.; et al. Association between fibroblast growth factor receptor 4 polymorphisms and risk of hepatocellular carcinoma. Mol. Carcinog. 2012, 51, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Yang, S.F.; Liu, Y.F.; Lin, W.L.; Han, C.P.; Wang, P.H. Association of fibroblast growth factor receptor 4 genetic polymorphisms with the development of uterine cervical cancer and patient prognosis. Reprod. Sci. 2018, 25, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tsay, M.D.; Hsieh, M.J.; Lee, C.Y.; Wang, S.S.; Chen, C.S.; Hung, S.C.; Lin, C.Y.; Yang, S.F. Involvement of FGFR4 gene variants on the clinicopathological severity in urothelial cell carcinoma. Int. J. Environ. Res. Public Health 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Tateno, T.; Asa, S.L.; Zheng, L.; Mayr, T.; Ullrich, A.; Ezzat, S. The FGFR4-g388r polymorphism promotes mitochondrial stat3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet. 2011, 7, e1002400. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.; Wang, R.; Pintilie, M.; Asa, S.L. FGFR4 polymorphic alleles modulate mitochondrial respiration: A novel target for somatostatin analog action in pituitary tumors. Oncotarget 2017, 8, 3481–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, Y.; Ozaki, T.; Ouchida, M.; Umehara, N.; Ohata, N.; Yoshida, A.; Shimizu, K.; Inoue, H. Single nucleotide polymorphism in fibroblast growth factor receptor 4 at codon 388 is associated with prognosis in high-grade soft tissue sarcoma. Cancer 2003, 98, 2245–2250. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.L.; de Carvalho, M.B.; Dos Santos, M.; Mercante, A.M.; Gazito, D.; de Cicco, R.; Group, G.; Tajara, E.H.; Louro, I.D.; da Silva, A.M. FGFR4 profile as a prognostic marker in squamous cell carcinoma of the mouth and oropharynx. PLoS ONE 2012, 7, e50747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.Y.; Rho, Y.S.; Kwon, K.H.; Chung, E.J.; Kim, J.H.; Park, I.S.; Lee, D.J. ECRG1 and FGFR4 single nucleotide polymorphism as predictive factors for nodal metastasis in oral squamous cell carcinoma. Cancer Biomark 2012, 12, 115–124. [Google Scholar] [CrossRef]
- Chou, C.H.; Hsieh, M.J.; Chuang, C.Y.; Lin, J.T.; Yeh, C.M.; Tseng, P.Y.; Yang, S.F.; Chen, M.K.; Lin, C.W. Functional FGFR4 gly388arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget 2017, 8, 96225–96238. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.W.; Ma, J.; Feng, F.; Fu, W.; Shu, S.R.; Ma, T.; Wu, C.; Liu, G.C.; Zhu, J. Functional FGFR4 gly388arg polymorphism contributes to cancer susceptibility: Evidence from meta-analysis. Oncotarget 2017, 8, 25300–25309. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Li, Y.; Wang, X.; Chen, B.; Wang, Y.; Liu, S.; Xu, J.; Zhao, W.; Wu, J. FGFR4 transmembrane domain polymorphism and cancer risk: A meta-analysis including 8555 subjects. Eur. J. Cancer 2010, 46, 3332–3338. [Google Scholar] [CrossRef] [PubMed]
- Spinola, M.; Leoni, V.; Pignatiello, C.; Conti, B.; Ravagnani, F.; Pastorino, U.; Dragani, T.A. Functional FGFR4 gly388arg polymorphism predicts prognosis in lung adenocarcinoma patients. J. Clin. Oncol. 2005, 23, 7307–7311. [Google Scholar] [CrossRef] [PubMed]
- Falvella, F.S.; Frullanti, E.; Galvan, A.; Spinola, M.; Noci, S.; De Cecco, L.; Nosotti, M.; Santambrogio, L.; Incarbone, M.; Alloisio, M.; et al. FGFR4 gly388arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. Int. J. Cancer 2009, 124, 2880–2885. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Okuda, K.; Kawano, O.; Yukiue, H.; Yano, M.; Fujii, Y. Fibroblast growth factor receptor 4 mutation and polymorphism in japanese lung cancer. Oncol. Rep. 2008, 20, 1125–1130. [Google Scholar] [CrossRef]
- Fang, H.M.; Tian, G.; Zhou, L.J.; Zhou, H.Y.; Fang, Y.Z. FGFR4 genetic polymorphisms determine the chemotherapy response of chinese patients with non-small cell lung cancer. Acta Pharmacol. Sin. 2013, 34, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Matakidou, A.; El Galta, R.; Rudd, M.F.; Webb, E.L.; Bridle, H.; Eisen, T.; Houlston, R.S. Further observations on the relationship between the FGFR4 gly388arg polymorphism and lung cancer prognosis. Br. J. Cancer 2007, 96, 1904–1907. [Google Scholar] [CrossRef] [Green Version]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The iaslc lung cancer staging project: Proposals for revision of the tnm stage groupings in the forthcoming (eighth) edition of the tnm classification for lung cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.-E.; Hsieh, M.-J.; Hsin, C.-H.; Chiang, W.-L.; Lai, Y.-C.; Lee, Y.-H.; Huang, S.-C.; Yang, S.-F.; Lin, C.-W. CD44 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. PLoS ONE 2014, 9, e93692. [Google Scholar] [CrossRef]
- Sheu, M.J.; Hsieh, M.J.; Chiang, W.L.; Yang, S.F.; Lee, H.L.; Lee, L.M.; Yeh, C.B. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS ONE 2015, 10, e0122961. [Google Scholar] [CrossRef]
- Hua, K.T.; Liu, Y.F.; Hsu, C.L.; Cheng, T.Y.; Yang, C.Y.; Chang, J.S.; Lee, W.J.; Hsiao, M.; Juan, H.F.; Chien, M.H.; et al. 3'utr polymorphisms of carbonic anhydrase ix determine the mir-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci. Rep. 2017, 7, 4466. [Google Scholar] [CrossRef]
- Midha, A.; Dearden, S.; McCormack, R. Egfr mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutmapii). Am. J. Cancer Res. 2015, 5, 2892–2911. [Google Scholar] [PubMed]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 2009, 361, 958–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.; Wu, Q.; Zhang, J.; Zhou, Y. Prognostic value of EGFR 19-del and 21-l858r mutations in patients with non-small cell lung cancer. Oncol. Lett. 2019, 18, 3887–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulaganathan, V.K.; Sperl, B.; Rapp, U.R.; Ullrich, A. Germline variant FGFR4 p.G388r exposes a membrane-proximal stat3 binding site. Nature 2015, 528, 570–574. [Google Scholar] [CrossRef]
- Kogan, D.; Grabner, A.; Yanucil, C.; Faul, C.; Ulaganathan, V.K. Stat3-enhancing germline mutations contribute to tumor-extrinsic immune evasion. J. Clin. Investig. 2018, 128, 1867–1872. [Google Scholar] [CrossRef]
Subject Characteristics | Wild-Type (n = 108) | Mutation-Type (n = 169) | p-Value |
---|---|---|---|
Age, n (%) | |||
Mean ± SD (years) | 65.52 ± 13.55 | 65.76 ± 13.57 | 0.817 |
Gender, n (%) | |||
Male | 65 (60.2%) | 60 (35.5%) | <0.001 |
Female | 43 (39.8%) | 109 (64.5%) | |
Cigarette smoking, n (%) | |||
Non-smoker | 48 (44.4%) | 131 (77.5%) | <0.001 |
Ever-smoker | 60 (55.6%) | 38 (22.5%) | |
Stage, n (%) | |||
I + II | 26 (24.1%) | 47 (27.8%) | 0.491 |
III + IV | 82 (75.9%) | 122 (72.2%) | |
Tumor T status, n (%) | |||
T1 + T2 | 60 (55.6%) | 108 (63.9%) | 0.165 |
T3 + T4 | 48 (44.4%) | 61 (36.1%) | |
Lymph node status, n (%) | |||
Negative | 28 (25.9%) | 54 (32.0%) | 0.284 |
Positive | 80 (74.1%) | 115 (68.0%) | |
Distant Metastasis, n (%) | |||
Negative | 54 (50.0%) | 80 (47.3%) | 0.665 |
Positive | 54 (50.0%) | 89 (52.7%) | |
Cell differentiation, n (%) | |||
Well | 8 (7.4%) | 21 (12.4%) | 0.002 |
Moderately | 79 (73.1%) | 138 (81.7%) | |
Poorly | 21 (19.4%) | 10 (5.9%) |
Genotype SNP | Wild-Type (n = 108) | Mutation-Type (n = 169) | AOR (95% CI) | p-Value |
---|---|---|---|---|
rs2011077 | ||||
TT | 26 (24.1%) | 46 (27.2%) | 1.00 | |
TC | 58 (53.7%) | 78 (46.2%) | 0.86 (0.46–1.60) | 0.625 |
CC | 24 (22.2%) | 45 (26.6%) | 1.16 (0.56–2.42) | 0.684 |
TC + CC | 82 (75.9%) | 123 (72.8%) | 0.95 (0.52–1.71) | 0.858 |
rs351855 | ||||
GG | 28 (25.9%) | 48 (28.4%) | 1.00 | |
GA | 59 (54.6%) | 80 (47.3%) | 0.95 (0.51–1.76) | 0.870 |
AA | 21 (19.5%) | 41 (24.3%) | 1.25 (0.59–2.63) | 0.561 |
GA + AA | 80 (74.1%) | 121 (71.6%) | 1.03 (0.58–1.85) | 0.914 |
rs7708357 | ||||
GG | 103 (95.4%) | 165 (97.6%) | 1.00 | |
GA | 5 (4.6%) | 3 (1.8%) | 0.52 (0.11–2.43) | 0.402 |
AA | 0 (0.0%) | 1 (0.6%) | ||
GA + AA | 5 (4.6%) | 4 (2.4%) | 0.64 (0.15–2.67) | 0.535 |
rs1966265 | ||||
AA | 27 (25.0%) | 44 (26.0%) | 1.00 | |
AG | 58 (53.7%) | 82 (48.5%) | 0.97 (0.52–1.82) | 0.935 |
GG | 23 (21.3%) | 43 (25.5%) | 1.31 (0.62–2.74) | 0.482 |
AG + GG | 81 (75.0%) | 125 (74.0%) | 1.07 (0.59–1.93) | 0.826 |
Variable | ALL (n = 277) | EGFR Wild-Type (n = 108) | EGFR Mutation (n = 169) | ||||||
---|---|---|---|---|---|---|---|---|---|
TT (n = 72) | TC + CC (n = 205) | p-Value | TT (n = 26) | TC + CC (n = 82) | p-Value | TT (n = 46) | TC + CC (n = 123) | p-Value | |
Stages | |||||||||
I+II | 19 (26.4%) | 54 (26.3%) | p = 0.994 | 5 (19.2%) | 21 (25.6%) | p = 0.507 | 14 (30.4%) | 33 (26.8%) | p = 0.642 |
III+IV | 53 (73.6%) | 151 (73.7%) | 21 (80.8%) | 61 (74.4%) | 32 (69.6%) | 90 (73.2%) | |||
Tumor T status | |||||||||
T1+T2 | 40 (55.6%) | 128 (62.4%) | p = 0.304 | 11 (42.3%) | 49 (59.8%) | p = 0.119 | 29 (63.0%) | 79 (64.2%) | p = 0.887 |
T3+T4 | 32 (44.4%) | 77 (37.6%) | 15 (57.7%) | 33 (40.2%) | 17 (37.0%) | 44 (35.8%) | |||
Lymph node status | |||||||||
Negative | 23 (31.9%) | 59 (28.8%) | p = 0.613 | 6 (23.1%) | 22 (26.8%) | p = 0.704 | 17 (37.0%) | 37 (30.1%) | p = 0.394 |
Positive | 49 (68.1%) | 146 (71.2%) | 20 (76.9%) | 58 (73.2%) | 29 (63.0%) | 86 (69.9%) | |||
Distant metastasis | |||||||||
Negative | 28 (38.9%) | 106 (51.7%) | p = 0.061 | 8 (30.8%) | 46 (56.1%) | p = 0.024 a | 20 (43.5%) | 60 (48.8%) | p = 0.539 |
Positive | 44 (61.1%) | 99 (48.3%) | 18 (69.2%) | 36 (43.9%) | 26 (56.5%) | 63 (51.2%) | |||
Cell differentiation | |||||||||
Well/ Moderately | 65 (90.3%) | 181 (88.3%) | p = 0.646 | 20 (76.9%) | 67 (81.7%) | p = 0.591 | 45 (97.8%) | 114 (92.7%) | p = 0.207 |
Poorly | 7 (9.7%) | 24 (11.7%) | 6 (23.1%) | 15 (18.3%) | 1 (2.2%) | 9 (7.3%) |
Variable | ALL (n = 277) | EGFR Wild-Type (n = 108) | EGFR Mutation (n = 169) | ||||||
---|---|---|---|---|---|---|---|---|---|
GG (n = 76) | GA + AA (n = 201) | p-Value | GG (n = 28) | GA + AA (n = 80) | p-Value | GG (n = 48) | GA + AA (n =121) | p-Value | |
Stages | |||||||||
I + II | 19 (25.0%) | 54 (26.9%) | p = 0.753 | 5 (17.9%) | 21 (26.2%) | p = 0.371 | 14 (29.2%) | 33 (27.3%) | p = 0.804 |
III + IV | 57 (75.0%) | 151 (73.1%) | 23 (82.1%) | 59 (73.8%) | 34 (70.8%) | 88 (72.7%) | |||
Tumor T status | |||||||||
T1 + T2 | 41 (53.9%) | 127 (63.2%) | p = 0.160 | 12 (42.9%) | 48 (60.0%) | p = 0.116 | 29 (60.4%) | 79 (65.3%) | p = 0.552 |
T3 + T4 | 35 (46.1%) | 74 (36.8%) | 16 (57.1%) | 32 (40.0%) | 19 (39.6%) | 42 (34.7%) | |||
Lymph node status | |||||||||
Negative | 23 (30.3%) | 59 (29.4%) | p = 0.882 | 6 (21.4%) | 22 (27.5%) | p = 0.528 | 17 (35.4%) | 37 (30.6%) | p = 0.543 |
Positive | 53 (69.7%) | 142 (70.6%) | 22 (78.6%) | 58 (72.5%) | 31 (64.6%) | 84 (69.4%) | |||
Distant metastasis | |||||||||
Negative | 28 (38.9%) | 106 (52.7%) | p = 0.018 a | 8 (28.6%) | 46 (57.5%) | p = 0.008 b | 20 (41.7%) | 60 (49.6%) | p = 0.352 |
Positive | 48 (63.2%) | 99 (47.3%) | 20 (71.4%) | 34 (42.5%) | 28 (58.3%) | 61 (50.4%) | |||
Cell differentiation | |||||||||
Well/Moderately | 69 (90.8%) | 181 (88.1%) | p = 0.520 | 22 (78.6%) | 65 (81.2%) | p = 0.758 | 47 (97.9%) | 112 (92.6%) | p = 0.183 |
Poorly | 7 (9.2%) | 24 (11.9%) | 6 (21.4%) | 15 (18.8%) | 1 (2.1%) | 9 (7.4%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-P.; Huang, H.-C.; Yang, P.-J.; Chang, C.-Y.; Chao, Y.-H.; Tsao, T.C.-Y.; Huang, H.; Hung, Y.-C.; Hsieh, M.-J.; Yang, S.-F. FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 5694. https://doi.org/10.3390/ijerph17165694
Li J-P, Huang H-C, Yang P-J, Chang C-Y, Chao Y-H, Tsao TC-Y, Huang H, Hung Y-C, Hsieh M-J, Yang S-F. FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(16):5694. https://doi.org/10.3390/ijerph17165694
Chicago/Turabian StyleLi, Ju-Pi, Hsien-Cheng Huang, Po-Jen Yang, Chien-Yuan Chang, Yu-Hua Chao, Thomas Chang-Yao Tsao, Hsuan Huang, Yu-Ching Hung, Ming-Ju Hsieh, and Shun-Fa Yang. 2020. "FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan" International Journal of Environmental Research and Public Health 17, no. 16: 5694. https://doi.org/10.3390/ijerph17165694
APA StyleLi, J. -P., Huang, H. -C., Yang, P. -J., Chang, C. -Y., Chao, Y. -H., Tsao, T. C. -Y., Huang, H., Hung, Y. -C., Hsieh, M. -J., & Yang, S. -F. (2020). FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan. International Journal of Environmental Research and Public Health, 17(16), 5694. https://doi.org/10.3390/ijerph17165694