Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Synthesis of Silver Nanoparticles (AgNPs)
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Energy Dispersive Spectroscopy (EDS)
2.3. Crude Oil Degradation by Fungal Isolates
2.3.1. Emulsification Activity, E24
2.3.2. Surface Tension
2.3.3. Fungal Adhesion to Hydrocarbons (FATH)
2.4. Biodegradation of Crude Oil in the Presence of Fungal Isolates and/or AgNPs
2.5. Extraction and Analysis of Crude Oil Degradation by GC-MS
2.6. Identifying Significant Variables Using Box-Behnken Design (BBD)
2.7. Genomic DNA Extraction
2.8. ISSR-PCR
2.9. Data Analysis
3. Results and Discussion
3.1. Molecular Identification
3.2. Characterization of Fungal AgNPs
3.3. Crude Oil Degradation by Fungal Isolates
3.4. Biodegradation of Crude Oil by Two Fungal Isolates and/or AgNPs
3.5. Analysis of Crude Oil Biodegradation by GC-MS
3.6. Optimization of Biodegradation Using RSM
3.7. Molecular Characterization of Fungal Isolates by ISSR
3.7.1. A. flavus Isolates
3.7.2. T. harzianum Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, K.; Ali, F.; Ragavan, N.A.; Manhas, P.S. Sustainable tourism and resident satisfaction at Jammu and Kashmir, India. Worldw. Hosp. Tour. Themes 2015, 7, 486–499. [Google Scholar] [CrossRef]
- Balachandran, C.; Duraipandiyan, V.; Balakrishna, K.; Ignacimuthu, S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1 isolated from oil contaminated soil). Bioresour. Technol. 2012, 112, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Kucharski, J. Response of Avena sativa, microorganisms and enzymes to contamination of soil with diesel oil. Plant Soil Environ. 2015, 61, 483–488. [Google Scholar] [CrossRef]
- Ojo, O.A. Petroleum hydrocarbon utilization by native bacterial population from a wastewater canal in Southwest Nigeria. Afr. J. Biotechnol. 2006, 5, 333–337. [Google Scholar]
- Liu, G.H.; Ye, Z.; Tong, K.; Zhang, Y.H. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem. Eng. J. 2013, 72, 48–53. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, G.H.; Song, K. Biological treatment of 2, 4, 6- trinitrotoluene (TNT) red water by immobilized anaerobic and aerobic microbial filters. Chem. Eng. J. 2015, 259, 876–884. [Google Scholar] [CrossRef]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of diesel fuel hydrocarbons by mangrove fungi from red sea coast of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 211–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Wang, W.; Xue, X.; Cao, C.; Zhang, Y. Fungal diversity in major oil-shale mines in China. J. Environ. Sci. 2016, 41, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Marchand, C.; St-Arnaud, M.; Hogland, W.; Bell, T.H.; Hijri, M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int. Biodeterior. Biodegr. 2017, 116, 48–57. [Google Scholar] [CrossRef]
- Al-Nasrawi, H. Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J. Bioremed. Biodegrad. 2012, 3, 147–157. [Google Scholar] [CrossRef]
- Shan, G.; Xing, J.; Zhang, H.; Liu, H. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl. Environ. Microbiol. 2005, 71, 4497–4502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, K.H.; Cha, D.K. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 2008, 72, 257–262. [Google Scholar] [CrossRef]
- Roy, A.; Dutta, A.; Pal, S.; Gupta, A.; Sarkar, J.; Chatterjee, A.; Saha, A.; Sarkar, P.; Sar, P.; Kazy, S.K. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour. Technol. 2018, 253, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.; Löffler, C.; Morris, B.E.L.; Kung, J.W. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme a esters: Organisms, strategies and key enzymes. Environ. Microbiol. 2014, 16, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Fan, B.; Lui, J.C.; Chiu, D.-M. Stochastic analysis of file-swarming systems. Perform. Eval. 2007, 64, 856–875. [Google Scholar] [CrossRef]
- Muhonja, C.; Magoma, G.; Imbuga, M.; Makonde, H.M. Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. Int. J. Microbiol. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Gehlot, P.; Purohit, D.K.; Singh, S.K. Molecular diagnostics of human pathogenic Aspergillus species. Indian J. Biotechnol. 2011, 10, 207–216. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D., Sninsky, J., White, T., Eds.; Academic Press: Orlando, FL, USA, 1990; pp. 315–322. [Google Scholar]
- El-Aziz, A.R.M.A.; Al-Othman, M.R.; Eifan, S.A.; Mahmoud, M.A.; Majrashi, M.; Raju, D.P. Green synthesis of silver nanoparticles using Aspergillus terreus (KC462061). Dig. J. Nanomater. Biostructures 2013, 8, 1215–1225. [Google Scholar]
- Gianvito, V.; David, B.; Ioannis, N.; Copret, C.; Lopez, N.; Prez-Ramoirez, J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem 2013, 5, 3750–3759. [Google Scholar] [CrossRef]
- Haghighat, S.; Akhavan, A.; Assadi, M.M.; Manoj, L. Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial EOR. Int. J. Environ. Sci. Technol. 2008, 5, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.G.; Goldenberg, B.G. Surface active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, M.; Pastore, G. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97, 336–344. [Google Scholar] [CrossRef]
- Doyle, R.J.; Rosenberg, M. Microbial cell surface hydrophobicity: History measurement and significance. In Microbial Cell Surface Hydrophobicity; Doyle, R.J., Rosenberg, M., Eds.; American Society for Microbiology: Washington, DC, USA, 1990; pp. 1–37. [Google Scholar]
- Haddad, N.I.; Wang, J.; Bozhong, M.M. Isolation and characterization of biosurfactant producing strain, Brevibacili brevis HOB1. J. Ind. Microbiol. Biotechnol. 2008, 35, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Joo, M.H.; Kim, J.Y. Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 193–200. [Google Scholar] [CrossRef]
- Sun, S.; Qiyou, L.; Shuiquan, C.; Wenhe, Y.; Chaocheng, Z.; Hongkun, C. Optimization for microbial degradation of petroleum hydrocarbon (TPH) by Enterobacter sp. S-1 using response surface methodology, Petrol. Sci. Technol. 2019, 37, 821–828. [Google Scholar] [CrossRef]
- Zhang, C.; Fu-Guo, X.; Jonathan, N.S.; Yang, Q.-L.; Zhou, L.; Zhao, Y.-J.; Yang, L. The effectiveness of ISSR profiling for studying genetic diversity of Aspergillus flavus from peanut-cropped soils in China. Biochem. Syst. Ecol. 2013, 50, 147–153. [Google Scholar] [CrossRef]
- Amer, O.E.; Mahmoud, M.A.; El-Samawaty, A.M.; Sayed, S.R. Non liquid nitrogen-based-method for isolation of DNA from filamentous fungi. Afr. J. Biotechnol. 2011, 10, 14337–14341. [Google Scholar]
- Lakhani, H.N.; Dinesh, N.V.; Mohamed, M.H.; Eissa, R.A. Fingerprinting and molecular comparison among two parental strains of Trichoderma spp. and their corresponding fusants produced by protoplast fusion. Biotechnol. Biotechnol. Equip. 2016, 30, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Florez, A.B.; Alvarez-Martin, P.; Lopez-Diaz, T.M.; Mayo, B. Morphotypic and molecular identification of filamentous fungi from Spanish blue-veined cabrales cheese, and typing of Penicillium requeforti and Geotrichum candidum isolates. Int. Dairy J. 2007, 17, 350–357. [Google Scholar] [CrossRef]
- Zeng, X.; Kong, F.; Halliday, C.; Sharon, C.; Anna, L.; Geoffrey, P.; Tania, C.S. Reverse line blot hybridization assay for identification of medically important fungi from culture and clinical specimens. J. Clin. Microbiol. 2007, 45, 2872–2880. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.C.; Kharwar, R.N.; Gange, A.C. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond.) 2010, 5, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Selvi, K.V.; Sivakumar, T. Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbiol. Appl. Sci. 2012, 1, 56–62. [Google Scholar]
- Mallikarjuna, K.; Sushma, N.J.; Narasimha, G.; Manoj, L.; Raju, D.P. Phytochemical fabrication and characterization of silver nanoparticles by using pepper leaf broth. Arab. J. Chem. 2014, 7, 1099–1103. [Google Scholar] [CrossRef] [Green Version]
- EL-Hanafy, A.A.; Yasir, A.; Jamal, S.M.; Salah, M.; Al-Garni, S.M.; Zinadan, O.H.A.; Ahmed, M.M. Characterization of native fungi responsible for degrading crude oil from the coastal area of Yanbu, Saudi Arabia. Biotechnol. Equip. 2017, 31, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawash, B.A.; Jawadayn, T.; Alkooranee, H.A.; Abbood, H.A.; Zhang, J.; Sun, J.; Zhang, X.; Fuying, M. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol. Rep. 2018, 17, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 1369–1380. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawash, B.A.; Zhang, X.; Fuying, M. Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 2019, 8, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Vasileva-Tonkova, E.; Galabova, D.; Stoimenova, E.; Lalchev, Z. Characterization of bacterial isolates from industrial wastewater according to probable modes of hexadecane uptake. Microbiol. Res. 2008, 163, 481–486. [Google Scholar] [CrossRef]
- Balajil, V.; Arulazhagan, P.; Ebenezer, P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J. Environ. Biol. 2014, 35, 521–529. [Google Scholar]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. 2013, 2, 620–628. [Google Scholar] [CrossRef]
- El-Sheshtawy, H.S.; Ahmed, W. Bioremediation of crude oil by Bacillus licheniformis in the presence of different concentration nanoparticles and produced biosurfactant. Int. J. Environ. Sci. Technol. 2017, 14, 1603–1614. [Google Scholar] [CrossRef]
- Abbas, A.; Taha, H.; Tapani, Y. A polyphasic approach to compare the genomic profiles of aflatoxigenic and non-aflatoxigenic isolates of Aspergillus section Flavi. Toxins 2020, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Independent Variables | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature, °C | 25 | 30 | 35 |
pH | 6 | 7 | 8 |
Crude oil concentration, g/L | 2 | 4 | 6 |
Ratio between A. flavus AF15 and T. harzianum TH07 | 1:2 | 1:1 | 2:1 |
AgNPs concentration g | 0.05 | 0.1 | 0.2 |
Fungi of Soil | Fungi of GenBank | Identity | ||
---|---|---|---|---|
Isolate Name | Accession No. | Name | Accession Number | |
A.terreus | KC462061 * | A.terreus | GU966497 | 99% |
A.flavus | AF15 ** | A.flavus | KY488467 | 98% |
T.harzianum | TH07 ** | T.harzianum | KC569346 | 99% |
F.solani | FS12 ** | F.solani | MF136402 | 98% |
Fungal Isolates | Mean of % Biodegradation | Surface Tension (mN/m) | Cell Surface Hydrophobicity (FATH, %) | Emulsification Activity (E24; %) |
---|---|---|---|---|
A. terreus KC462061 | 23.87 ± 0.05 | 52.31 ± 0.20 | 46.58 ± 0.72 | 41.26 ± 0.52 |
A. flavus AF15 | 41.94 ± 0.76 | 39.80 ± 0.57 | 36.74 ± 0.64 | 51.57 ± 0.38 |
T. harzianum TH07 | 37.36 ± 0.49 | 43.21 ± 0.82 | 39.51 ± 0.55 | 47.23 ± 0.31 |
F. solani FS12 | 19.42 ± 0.81 | 53.92 ± 0.14 | 49.74 ± 0.21 | 44.81 ± 0.64 |
Sample | Incubation Periods (Days) | Percentage of Biodegradation a (%) | Incubation Periods (Days) | Percentage of Biodegradation a (%) | ||||
---|---|---|---|---|---|---|---|---|
After 3 Days | After 7 Days | |||||||
Surface Tension (mN/m) | Cell Surface Hydrophobicity (FATH, %) | Emulsification Activity (E24; %) | Surface Tension (mN/m) | Cell Surface Hydrophobicity (FATH, %) | Emulsification Activity (E24; %) | |||
crude oil (Control) | 62.4 | 0.0 | 0.0 | 0.00 | 62.4 | 0.0 | 0.0 | 0.00 |
Crude oil + AF | 42.7 | 41.5 | 54.5 | 17.2 | 38.6 | 40.7 | 46.1 | 45.5 |
Crude oil + AF + AgNPs 0.05 g | 47.1 | 45.7 | 59.1 | 25.6 | 35.4 | 43.2 | 61.4 | 53.4 |
Crude oil + AF + AgNPs 0.1 g | 45.5 | 47.2 | 55.4 | 22.5 | 42.8 | 42.3 | 57.2 | 50.6 |
Crude oil + AF + AgNPs 0.2 g | 46.2 | 42.3 | 54.7 | 21.3 | 45.2 | 45.8 | 55.7 | 49.3 |
Crude oil + TH | 49.9 | 46.9 | 57.3 | 18.9 | 40.9 | 51.9 | 42.6 | 42.8 |
Crude oil + TH + AgNPs 0.05 g | 52.3 | 44.7 | 54.9 | 23.4 | 34.5 | 53.2 | 64.2 | 51.5 |
Crude oil + TH + AgNPs 0.1 g | 49.1 | 44.8 | 51.2 | 24.3 | 39.7 | 57.5 | 59.3 | 48.5 |
Crude oil + TH + AgNPs 0.2 g | 48.5 | 45.3 | 49.8 | 21.7 | 45.3 | 52.5 | 56.8 | 46.2 |
Crude oil + AF + TH | 39.7 | 43.1 | 51.4 | 29.4 | 35.2 | 59.6 | 65.2 | 49.3 |
Crude oil + AF + TH + AgNPs 0.05 g | 40.4 | 41.9 | 63.1 | 31.6 | 32.8 | 63.4 | 67.9 | 57.8 |
Crude oil + AF + TH + AgNPs 0.1 g | 40.1 | 43.4 | 59.7 | 28.9 | 36.1 | 63.1 | 64.5 | 53.7 |
Crude oil + AF + TH + AgNPs 0.2 g | 38.5 | 44.6 | 57.9 | 25.5 | 38.7 | 59.3 | 60.2 | 50.4 |
Crude oil + AgNPs 0.05 g | 51.3 | 49.3 | 31.4 | 13.8 | 49.6 | 29.7 | 35.1 | 15.1 |
Crude oil + AgNPs 0.1 g | 52.9 | 48.6 | 28.2 | 11.7 | 50.2 | 31.4 | 33.7 | 13.9 |
Crude oil + AgNPs 0.2 g | 54.8 | 46.1 | 27.5 | 9.2 | 53.9 | 32.7 | 32.9 | 12.4 |
Run | Temperature | pH | Crude Oil Conc. | Ratio between AF and TH | Nano Conc. | Biodegradation (%) | |
---|---|---|---|---|---|---|---|
Actual | Predicted | ||||||
1 | 0 | −1 | −1 | −1 | −1 | 45.69 | 48.17 |
2 | 0 | 0 | 0 | 0 | 0 | 49.27 | 58.81 |
3 | 0 | 1 | 1 | 1 | 1 | 27.53 | 28.82 |
4 | 0 | 0 | −1 | −1 | −1 | 35.91 | 37.80 |
5 | 0 | 0 | 0 | −1 | −1 | 38.11 | 40.85 |
6 | 1 | −1 | −1 | −1 | −1 | 38.13 | 39.71 |
7 | 1 | 0 | 0 | 0 | 0 | 43.67 | 44.92 |
8 | 1 | 1 | 1 | 1 | 1 | 31.83 | 20.58 |
9 | 1 | 0 | −1 | −1 | −1 | 33.66 | 30.58 |
10 | 1 | 0 | 0 | −1 | −1 | 35.19 | 37.44 |
11 | −1 | −1 | −1 | −1 | −1 | 37.12 | 34.91 |
12 | −1 | 0 | 0 | 0 | 0 | 36.67 | 38.26 |
13 | −1 | 1 | 1 | 1 | 1 | 21.56 | 19.71 |
14 | −1 | 0 | −1 | −1 | −1 | 32.24 | 34.78 |
15 | −1 | 0 | 0 | −1 | −1 | 28.35 | 25.57 |
16 | 0 | 0 | 0 | 0 | −1 | 57.21 | 59.16 |
17 | 0 | 1 | −1 | −1 | −1 | 20.62 | 22.37 |
18 | 0 | 1 | 0 | 0 | 0 | 32.85 | 35.72 |
19 | 0 | 1 | −1 | 0 | 0 | 34.78 | 36.55 |
20 | 0 | 1 | −1 | −1 | 0 | 29.51 | 27.93 |
21 | 1 | 0 | 0 | 0 | −1 | 42.26 | 44.71 |
22 | 1 | 1 | −1 | −1 | −1 | 32.55 | 34.78 |
23 | 1 | 1 | 0 | 0 | 0 | 29.14 | 31.03 |
24 | 1 | 1 | −1 | 0 | 0 | 34.71 | 35.98 |
25 | 1 | 1 | −1 | −1 | 0 | 41.63 | 39.39 |
26 | −1 | 0 | 0 | 0 | −1 | 44.15 | 42.92 |
27 | −1 | 1 | −1 | −1 | −1 | 37.42 | 40.07 |
28 | −1 | 1 | 0 | 0 | 0 | 35.11 | 32.55 |
29 | −1 | 1 | −1 | 0 | 0 | 32.84 | 35.23 |
30 | −1 | 1 | −1 | −1 | 0 | 28.17 | 30.83 |
Variables | Main Effect | t-Value | p-Value | Confidence Level (%) |
---|---|---|---|---|
Temperature, °C | 0.49 | 14.72 | 0.000 | 99.81 |
pH | 0.52 | 11.34 | 0.000 | 99.66 |
Crude oil concentration, g/L | 0.44 | 12.68 | 0.000 | 99.52 |
Ratio between AF and TH | 0.23 | 6.53 | 0.024 | 96.18 |
AgNPs concentration | 0.17 | 7.16 | 0.031 | 95.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zaban, M.I.; Mahmoud, M.A.; AlHarbi, M.A.; Bahatheq, A.M. Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. Int. J. Environ. Res. Public Health 2020, 17, 6564. https://doi.org/10.3390/ijerph17186564
Al-Zaban MI, Mahmoud MA, AlHarbi MA, Bahatheq AM. Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. International Journal of Environmental Research and Public Health. 2020; 17(18):6564. https://doi.org/10.3390/ijerph17186564
Chicago/Turabian StyleAl-Zaban, Mayasar I., Mohamed A. Mahmoud, Maha A. AlHarbi, and Aisha M. Bahatheq. 2020. "Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles" International Journal of Environmental Research and Public Health 17, no. 18: 6564. https://doi.org/10.3390/ijerph17186564
APA StyleAl-Zaban, M. I., Mahmoud, M. A., AlHarbi, M. A., & Bahatheq, A. M. (2020). Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. International Journal of Environmental Research and Public Health, 17(18), 6564. https://doi.org/10.3390/ijerph17186564