Association between Trace Elements and Body Composition Parameters in Endurance Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Nutritional Assessment
2.3. Training Characteristics
2.4. Anthropometric Measures
2.5. Physical Performance Evaluation
2.6. Blood Sample
2.7. Sample Determination
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mooses, M.; Jurimae, J.; Maestu, J.; Purge, P.; Mooses, K.; Jurimae, T. Anthropometric and physiological determinants of running performance in middle- and long-distance runners. Kinesiology 2013, 45, 154–162. [Google Scholar]
- Berg, K. Endurance training and performance in runners—Research limitations and unanswered questions. Sports Med. 2003, 33, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Dellagrana, R.A.; Guglielmo, L.G.A.; Santos, B.V.; Hernandez, S.G.; da Silva, S.G.S.G.; de Campos, W. Physiological, anthropometric, strength, and muscle power characteristics correlates with running performance in young runners. J. Strength Cond. Res. 2015, 29, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Arrese, A.L.; Ostariz, E.S.; Mallen, J.A.C.; Izquierdo, D.M. The changes in running performance and maximal oxygen uptake after long-term training in elite athletes. J. Sports Med. Phys. Fit. 2005, 45, 435–440. [Google Scholar]
- Arrese, A.L.; Ostariz, E.S.; Ostáriz, E.S. Skinfold thicknesses associated with distance running performance in highly trained runners. J. Sports Sci. 2006, 24, 69–76. [Google Scholar] [CrossRef]
- Laumets, R.; Viigipuu, K.; Mooses, K.; Mäestu, J.; Purge, P.; Pehme, A.; Kaasik, P.; Mooses, M.; Maestu, J.; Purge, P.; et al. Lower Leg Length is Associated with Running Economy in High Level Caucasian Distance Runners. J. Hum. Kinet. 2017, 56, 229–239. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Maynar, M.; Bartolomé, I.; Alves, J.; Barrientos, G.; Grijota, F.J.; Robles, M.C.; Munõz, D. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J. Int. Soc. Sports Nutr. 2019, 16, 53. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, S.M.; Horner, K.; De Vito, G.; Conway, G.E. The role of mineral and trace element supplementation in exercise and athletic performance: A systematic review. Nutrients 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Soria, M.; Gonzalez-Haro, C.; Anson, M.; Lopez-Colon, J.L.; Escanero, J.F. Plasma levels of trace elements and exercise induced stress hormones in well-trained athletes. J. Trace Elem. Med. Biol. 2015, 31, 113–119. [Google Scholar] [CrossRef]
- Wang, N.; Lu, M.; Chen, C.; Xia, F.; Han, B.; Li, Q.; Cheng, J.; Chen, Y.; Zhu, C.; Jensen, M.D.; et al. Adiposity genetic risk score modifies the association between blood lead level and body mass index. J. Clin. Endocrinol. Metab. 2018, 103, 4005–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastorakos, G.; Pavlatou, M.; Diamanti-Kandarakis, E.; Chrousos, G.P. Exercise and the stress system. Hormones (Athens) 2005, 4, 73–89. [Google Scholar] [PubMed]
- Nikolaidis, M.G.; Jamurtas, A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 2009, 490, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.; Nelson, W.; Hudson, M. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic. Biol. Med. 2011, 51, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Marín, D.; Barrientos, G.; Alves, J.; Grijota, F.J.; Robles, M.C.; Maynar, M.; Munoz, D.; Barrientos, G.; Alves, J.; Grijota, F.J.; et al. Oxidative stress, lipid peroxidation indexes and antioxidant vitamins in long and middle distance athletes during a sport season. J. Sports Med. Phys. Fit. 2017, 58. [Google Scholar] [CrossRef]
- Maynar, M.; Munoz, D.; Alves, J.; Barrientos, G.; Grijota, F.J.J.; Robles, M.C.C.; Llerena, F.; Muñoz, D.; Alves, J.; Barrientos, G.; et al. Influence of an Acute Exercise Until Exhaustion on Serum and Urinary Concentrations of Molybdenum, Selenium, and Zinc in Athletes. Biol. Trace Elem. Res. 2018, 186, 361–369. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, Z.Y.; Zhou, P.H.; Zhou, X.L.; Zhang, D.L.; He, N.; Zhang, J.; Liu, Y.H.; Gu, Q. Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis. 2018, 17, 165. [Google Scholar] [CrossRef] [Green Version]
- García, O.P.; Long, K.Z.; Rosado, J.L. Impact of micronutrient deficiencies on obesity. Nutr. Rev. 2009, 67, 559–572. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Sinitskii, A.I.; Popova, E.V.; Nemereshina, O.N.; Gatiatulina, E.R.; Skalnaya, M.G.; Skalny, A.V.; Nikonorov, A.A. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med. Hypotheses 2015, 85, 343–347. [Google Scholar] [CrossRef]
- Barrientos, G.; Alves, J.; Pradas, F.; Robles, M.C.; Muñoz, D.; Maynar, M. Association between parameters related to oxidative stress and trace minerals in Athletes. Sustainability 2020, 12, 4966. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Moreiras, O. Tablas de Composición de Alimentos, 16th ed.; Pirámide: Madrid, Spain, 2013. [Google Scholar]
- Reilly, C. The Nutritional Trace Metals; Blackwell Publishing Ltd.: Oxford, UK, 2004. [Google Scholar]
- Porta, J.; Galiano, D.; Tejedo, A.; González, J.M. Valoración de la composición corporal. Utopías y realidades. Man. Cineantropometría Monogr. FEMEDE 1993, 1993, 113–170. [Google Scholar]
- Stewart, A.; Marfell-Jones, M. International Society for the Advancement of, K. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; ISBN1 0620362073. ISBN2 9780620362078. [Google Scholar]
- Carter, J.; Jeukendrup, A.E. Validity and reliability of three commercially available breath-by-breath respiratory systems. Eur. J. Appl. Physiol. 2002, 86, 435–441. [Google Scholar] [CrossRef]
- Niemela, K.; Palatsi, I.; Takkunen, J. The oxygen uptake—Work-output relationship of runners during graded cycling exercise: Sprinters vs. endurance runners. Br. J. Sport. Med. 1980, 14, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Stellingwerff, T. Case Study: Body Composition Periodization in an Olympic-Level Female Middle-Distance Runner Over a 9-Year Career. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 428–433. [Google Scholar] [CrossRef]
- Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors. Sci. Total Environ. 2010, 408, 1014–1020. [Google Scholar] [CrossRef]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Koury, J.C.; de Oliveira, A.V.; Portella, E.S.; De Oliveira, C.F.; Lopes, G.C.; Donangelo, C.M. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 358–372. [Google Scholar] [CrossRef]
- Qu, X.; He, Z.; Qiao, H.; Zhai, Z.; Mao, Z.; Yu, Z.; Dai, K. Serum copper levels are associated with bone mineral density and total fracture. J. Orthop. Transl. 2018, 14, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.M. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp. Biol. Med. 2016, 241, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ralle, M.; Wolfgang, M.J.; Dhawan, N.; Burkhead, J.L.; Rodriguez, S.; Kaplan, J.H.; Wong, G.W.; Haughey, N.; Lutsenko, S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 2018, 16, e2006519. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Mughal, M.N.; Tanveer, M.; Gupta, D.; Abbas, G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ. Sci. Pollut. Res. 2017, 24, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Quan, J.I.; Li, L.; Kinghorn, K.J.; Ivanov, D.K.; Tain, L.S.; Slack, C.; Kerr, F.; Nespital, T.; Thornton, J.; Hardy, J.; et al. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Rep. 2016, 15, 638–650. [Google Scholar] [CrossRef] [Green Version]
- Zarse, K.; Terao, T.; Tian, J.; Iwata, N.; Ishii, N.; Ristow, M. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur. J. Nutr. 2011, 50, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Tucker, K.L.; Hannan, M.T.; Chen, H.; Cupples, L.A.; Wilson, P.W.F.; Kiel, D.P. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr. 1999, 69, 727–736. [Google Scholar] [CrossRef]
- Guidotti, S.; Minguzzi, M.; Platano, D.; Cattini, L.; Trisolino, G.; Mariani, E.; Borzì, R.M. Lithium chloride dependent glycogen synthase kinase 3 inactivation links oxidative DNA damage, hypertrophy and senescence in human articular chondrocytes and reproduces chondrocyte phenotype of obese osteoarthritis patients. PLoS ONE 2015, 10, e0143865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.F. Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128021682. [Google Scholar]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Zhong, Q.; Lin, R.; Nong, Q. Adiposity and serum selenium in U.S. adults. Nutrients 2018, 10, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.E.; Choi, S.I.; Lee, H.R.; Hwang, I.S.; Lee, Y.J.; An, B.S.; Lee, S.H.; Kim, H.J.; Kang, B.C.; Hwang, D.Y. Selenium significantly inhibits adipocyte hypertrophy and abdominal fat accumulation in OLETF rats via induction of fatty acid β-oxidation. Biol. Trace Elem. Res. 2012, 150, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Legaz, A.; Eston, R. Changes in performance, skinfold thicknesses, and fat patterning after three years of intense athletic conditioning in high level runners. Br. J. Sports Med. 2005, 39, 851–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, J.L.; Gómez, M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem. Toxicol. 2016, 95, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Beegom, R.; Rastogi, S.S.; Gaoli, Z.H.E.N.G.; Shoumin, Z. Association of low plasma concentrations of antioxidant vitamins, magnesium and zinc with high body fat per cent measured by bioelectrical impedance analysis in Indian men. Magnes. Res. 1998, 11, 3–10. [Google Scholar] [PubMed]
- Severo, J.S.; Morais, J.B.S.; Beserra, J.B.; dos Santos, L.R.; de Sousa Melo, S.R.; de Sousa, G.S.; de Matos Neto, E.M.; Henriques, G.S.; do Nascimento Marreiro, D. Role of Zinc in Zinc-α2-Glycoprotein Metabolism in Obesity: A Review of Literature. Biol. Trace Elem. Res. 2020, 193, 81–88. [Google Scholar] [CrossRef]
- Balaz, M.; Vician, M.; Janakova, Z.; Kurdiova, T.; Surova, M.; Imrich, R.; Majercikova, Z.; Penesova, A.; Vlcek, M.; Kiss, A.; et al. Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity 2014, 22, 1821–1829. [Google Scholar] [CrossRef]
- Rahimi, N.; Hassanipour, M.; Yarmohammadi, F.; Faghir-Ghanesefat, H.; Pourshadi, N.; Bahramnejad, E.; Dehpour, A.R. Nitric oxide and glutamate are contributors of anti-seizure activity of rubidium chloride: A comparison with lithium. Neurosci. Lett. 2019, 708, 134349. [Google Scholar] [CrossRef]
- Stolk, J.M.; Nowack, W.J.; Barchas, J.D.; Platman, S.R. Brain norepinephrine: Enhanced turnover after rubidium treatment. Science 1970, 168, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.H.; Kim, J.H.; Hong, A.R.; Lee, J.H.; Kim, S.W.; Shin, C.S. Dietary potassium intake is beneficial to bone health in a low calcium intake population: The Korean National Health and Nutrition Examination Survey (KNHANES) (2008–2011). Osteoporos. Int. 2017, 28, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Pilmane, M.; Salma-Ancane, K.; Loca, D.; Locs, J.; Berzina-Cimdina, L. Strontium and strontium ranelate: Historical review of some of their functions. Mater. Sci. Eng. C 2017, 78, 1222–1230. [Google Scholar] [CrossRef]
- Gulhan, I.; Bilgili, S.; Gunaydin, R.; Gulhan, S.; Posaci, C. The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: A prospective study. Arch. Gynecol. Obstet. 2008, 278, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Orrù, S.; Nigro, E.; Mandola, A.; Alfieri, A.; Buono, P.; Daniele, A.; Mancini, A.; Imperlini, E. A functional interplay between IGF-1 and adiponectin. Int. J. Mol. Sci. 2017, 18, 2145. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Llerena, F.; Bartolomé, I.; Alves, J.; Grijota, F.J.; Robles, M.C.; Muñoz, D.; Bartolome, I.; Alves, J.; Grijota, F.J.; et al. Influence of an exercise until exhaustion in serum and urinary concentrations of toxic minerals among professional athletes, a preliminary approach. J. Trace Elem. Med. Biol. 2018, 50, 312–319. [Google Scholar] [CrossRef]
- Wang, N.; Chen, C.; Nie, X.; Han, B.; Li, Q.; Chen, Y.; Zhu, C.; Chen, Y.; Xia, F.; Cang, Z.; et al. Blood lead level and its association with body mass index and obesity in China—Results from SPECT-China study. Sci. Rep. 2015, 5, 18299. [Google Scholar] [CrossRef]
- Pawlas, N.; Dobrakowski, M.; Kasperczyk, A.; Kozłowska, A.; Mikołajczyk, A.; Kasperczyk, S. The Level of Selenium and Oxidative Stress in Workers Chronically Exposed to Lead. Biol. Trace Elem. Res. 2016, 170, 1–8. [Google Scholar] [CrossRef] [Green Version]
Parameters | Runners | Ranges |
---|---|---|
Body mass (kg) | 64.97 ± 7.36 | 49.7–78.1 |
Fat mass (kg) | 5.35 ± 1.01 | 3.45–7.87 |
Bone mass (kg) | 11.91 ± 1.15 | 11.90–13.86 |
Muscle mass (kg) | 32.02 ± 3.96 | 22.65–38.15 |
Abdominal skinfold (mm) | 9.43 ± 2.75 | 5–16.8 |
Suprailiac skinfold (mm) | 6.22 ± 1.63 | 3.8–12.5 |
Subscapular skinfold (mm) | 8.43 ± 1.73 | 5.2–14.6 |
Triceps skinfold (mm) | 6.42 ± 1.76 | 3.8–11.3 |
Front thigh skinfold (mm) | 9.04 ± 2.90 | 5.2–15.8 |
Medial calf skinfold (mm) | 7.44 ± 2.26 | 3.3–13.4 |
∑6 skinfolds (mm) | 46.97 ± 9.34 | 32.4–73.7 |
Distance (m) | 4584.04 ± 537.84 | 3988–5619 |
VO2 max. (mL/min/kg) | 68.12 ± 4.21 | 55.15–77.03 |
Maximum heart rate (bpm) | 192.1 ± 6.75 | 186.2–198.4 |
Trace Elements, Recommended Intake | Intake |
---|---|
As (12–300 mg/d) | 1689 ± 834.15 |
B (0.75–1.35 mg/d) | 1.33 ± 1.50 |
Be (<50 µg/d) | 9.69 ± 8.99 |
Cd (<70 µg/d) | 23.34 ± 15.40 |
Co (200–300 µg/d) | 296.01 ± 214.97 |
Cu (2000–3000 µg/d) | 1675.96 ± 566.91 |
Li (180–550 µg/d) | 366.95 ± 396.90 |
Mn (2500–5000 µg/d) | 3381.40 ± 1439.97 |
Mo (75–400 µg/d) | 308.99 ± 181.93 |
Pb (<400 µg/d) | 209.10 ± 142.78 |
Rb (1.5–7 mg/d) | 3.904 ± 4.785 |
Se (50–200 µg/d) | 76.42 ± 44.99 |
Sr (1000–2300 µg/d) | 1890.76 ± 1784.30 |
V (10–70 µg/d) | 25.48 ± 29.28 |
Zn (10–15 mg/d) | 11.10 ± 3.72 |
Trace Elements | Runners | Range |
---|---|---|
As (µg/L) | 2.34 ± 2.80 | 0.24–12.00 |
B (µg/L) | 8.65 ± 10.98 | 0–59.98 |
Be (µg/L) | 0.07 ± 0.03 | 0–0.15 |
Cd (µg/L) | 0.07 ± 0.04 | 0.02–0.23 |
Co (µg/L) | 0.68 ± 0.11 | 0.47–0.87 |
Cu (µg/L) | 692.16 ± 132.53 | 453.9–937.01 |
Li (µg/L) | 1.38 ± 0.79 | 0.35–4.75 |
Mn (µg/L) | 2.05 ± 1.49 | 0.21–5.48 |
Mo (µg/L) | 0.63 ± 0.60 | 0.11–3.35 |
Pb (µg/L) | 0.96 ± 1.08 | 0.01–4.93 |
Rb (µg/L) | 138.50 ± 23.01 | 98.79–186.01 |
Se (µg/L) | 96.56 ± 13.89 | 69.75–124.10 |
Sr (µg/L) | 26.23 ± 8.12 | 14.79–47.50 |
V (µg/L) | 0.30 ± 0.37 | 0–1.80 |
Zn (µg/L) | 791.90 ± 144.01 | 538.02–1208.95 |
As (µg/L) | 2.34 ± 2.80 | 0.24–12.0 |
TE | Abdominal (mm) | Suprailiac (mm) | Subscapular (mm) | Triceps (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | |
Cu | −0.342 | −0.004 (−0.01/0.00) | 0.117 | 0.017 | ||||||||||||
Mn | 0.348 | 0.634 (0.12/1.14) | 0.121 | 0.015 | 0.315 | 0.340 (0.03/0.64) | 0.099 | 0.029 | ||||||||
Se | −0.304 | −0.061 (−0.11/0.00) | 0.093 | 0.035 | −0.368 | −0.047 (−0.08/−0.01) | 0.125 | 0.010 | ||||||||
V | ||||||||||||||||
Zn | −0.377 | −0.007 (−0.01/0.00) | 0.142 | 0.008 | ||||||||||||
Li | −0.323 | −1.094 (−2.04/−0.14) | 0.104 | 0.025 | −0.387 | −0.823 (−1.40/−0.24) | 0.149 | 0.007 | ||||||||
Rb | −0.317 | −0.024 (−0.04/0.00) | 0.100 | 0.028 | ||||||||||||
Sr | −0.309 | −0.105 (−0.20/−0.01) | 0.095 | 0.033 | −0.335 | −0.073 (−0.13/−0.01) | 0.112 | 0.020 | ||||||||
As | ||||||||||||||||
Be | ||||||||||||||||
Pb | 0.300 | 0.786 (0.04/1.52) | 0.090 | 0.038 |
TE | Front Thigh (mm) | Medial Calf (mm) | Sum of Six Skinfolds (mm) | Performance (Total Meters) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | |
Cu | ||||||||||||||||
Mn | −0.376 | −0.562 (−0.97/−0.15) | 0.142 | 0.008 | ||||||||||||
Se | −0.337 | −0.231 (−0.42/−0.04) | 0.114 | 0.019 | ||||||||||||
V | −0.405 | −2.518 (−4.20/−0.83) | 0.164 | 0.004 | ||||||||||||
Zn | ||||||||||||||||
Li | −0.322 | −3.694 (−6.91/−0.46) | 0.104 | 0.026 | 0.368 | 243.53 (61.18/425.87) | 0.136 | 0.010 | ||||||||
Rb | ||||||||||||||||
Sr | ||||||||||||||||
As | −0.311 | −0.335 (−0.63/−0.03) | 0.097 | 0.032 | ||||||||||||
Be | −0.346 | −22.806 (−41.15/−4.46) | 0.120 | 0.016 | ||||||||||||
Pb |
TE | Fat Mass (kg) | Muscle Mass (kg) | Bone Mass (kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | r | β (95% CI) | R2 | p | |
Cu | −0.296 | −0.002 (−0.01/0.00) | 0.088 | 0.041 | −0.295 | −0.009 (−0.01/0.00) | 0.087 | 0.042 | −0.359 | −0.003 (−0.01/0.00) | 0.129 | 0.012 |
Mn | ||||||||||||
Se | −0.389 | −0.029 (−0.05/−0.01) | 0.151 | 0.006 | −0.401 | −0.034 (−0.05/−0.01) | 0.161 | 0.005 | ||||
V | ||||||||||||
Zn | ||||||||||||
Li | −0.407 | −0.505 (−0.84/−0.16) | 0.165 | 0.004 | −0.355 | −1.725 (−3.07/−0.37) | 0.126 | 0.013 | −0.369 | −0.527 (−0.92/−0.13) | 0.137 | 0.010 |
Rb | −0.363 | −0.016 (−0.03/0.00) | 0.132 | 0.011 | −0.386 | −0.067 (−0.11/−0.02) | 0.149 | 0.007 | −0.532 | −0.027 (−0.04/−0.01) | 0.268 | 0.001 |
Sr | 0.362 | 0.178 (0.04/0.31) | 0.131 | 0.011 | ||||||||
As | ||||||||||||
Be | 0.303 | 34.972 (2.32/67.62) | 0.092 | 0.036 | ||||||||
Pb |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrientos, G.; Alves, J.; Toro, V.; Robles, M.C.; Muñoz, D.; Maynar, M. Association between Trace Elements and Body Composition Parameters in Endurance Runners. Int. J. Environ. Res. Public Health 2020, 17, 6563. https://doi.org/10.3390/ijerph17186563
Barrientos G, Alves J, Toro V, Robles MC, Muñoz D, Maynar M. Association between Trace Elements and Body Composition Parameters in Endurance Runners. International Journal of Environmental Research and Public Health. 2020; 17(18):6563. https://doi.org/10.3390/ijerph17186563
Chicago/Turabian StyleBarrientos, Gema, Javier Alves, Víctor Toro, María Concepción Robles, Diego Muñoz, and Marcos Maynar. 2020. "Association between Trace Elements and Body Composition Parameters in Endurance Runners" International Journal of Environmental Research and Public Health 17, no. 18: 6563. https://doi.org/10.3390/ijerph17186563
APA StyleBarrientos, G., Alves, J., Toro, V., Robles, M. C., Muñoz, D., & Maynar, M. (2020). Association between Trace Elements and Body Composition Parameters in Endurance Runners. International Journal of Environmental Research and Public Health, 17(18), 6563. https://doi.org/10.3390/ijerph17186563