Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Training Characteristics
2.3. Nutritional Assessment
2.4. Anthropometric Measures
2.5. Physical Performance Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arrese, A.L.; Ostariz, E.S.; Ostáriz, E.S. Skinfold thicknesses associated with distance running performance in highly trained runners. J. Sports Sci. 2006, 24, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Feltner, M.E.; Kautz, S.A.; Hamilton, M.T.; Montain, S.J.; Baylor, A.M.; Abraham, L.D.; Petrek, G.W. Physiological and biomechanical factors associated with elite endurance cycling performance. Med. Sci. Sports Exerc. 1991, 23, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Berg, K. Endurance Training and Performance in Runners. Sport. Med. 2003, 33, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; McNaughton, L.R.; Jones, A.M. Training to Enhance the Physiological Determinants of Long-Distance Running Performance. Sport. Med. 2007, 37, 857–880. [Google Scholar] [CrossRef]
- Maldonado, S.; Mujika, I.; Padilla, S. Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. Int. J. Sports Med. 2002, 23, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Basset, F.A.; Chouinard, R.; Boulay, M.R. Training profile counts for time-to-exhaustion performance. Can. J. Appl. Physiol. Can. Physiol. Appl. 2003, 28, 654–666. [Google Scholar] [CrossRef]
- Legaz, A.; Eston, R. Changes in performance, skinfold thicknesses, and fat patterning after three years of intense athletic conditioning in high level runners. Br. J. Sports Med. 2005, 39, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Mooses, M.; Jurimae, J.; Maestu, J.; Purge, P.; Mooses, K.; Jurimae, T. Anthropometric and physiological determinants of running performance in middle- and long-distance runners. Kinesiology 2013, 45, 154–162. [Google Scholar]
- Billat, V.; Beillot, J.; Jan, J.; Rochcongar, P.; Carre, F. Gender effect on the relationship of time limit at 100% VO2max with other bioenergetic characteristics. Med. Sci. Sports Exerc. 1996, 28, 1049–1055. [Google Scholar] [CrossRef]
- Bosquet, L.; Leger, L.; Legros, P.; Léger, L.; Legros, P. Methods to determine aerobic endurance. Sport. Med. 2002, 32, 675–700. [Google Scholar] [CrossRef]
- Rabadán, M.; Díaz, V.; Calderón, F.J.; Benito, P.J.; Peinado, A.B.; Maffulli, N.; Rabadan, M.; Diaz, V.; Calderon, F.J.; Benito, P.J.; et al. Physiological determinants of speciality of elite middle- and long-distance runners. J. Sports Sci. 2011, 29, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Tjelta, L.I.; Tjelta, A.R. Relationship between Velocity at Anaerobic Threshold and Factors Affecting Velocity at Anaerobic Threshold in Elite Distance Runners. IJASS Int. J. Appl. Sport. Sci. 2012, 24, 8–17. [Google Scholar]
- Dellagrana, R.A.; Guglielmo, L.G.A.; Santos, B.V.; Hernandez, S.G.; da Silva, S.G.S.G.; de Campos, W. Physiological, anthropometric, strength, and muscle power characteristics correlates with running performance in young runners. J. Strength Cond. Res. 2015, 29, 1584–1591. [Google Scholar] [CrossRef]
- Winter, E.M.; Hamley, E.J. Sub maximal oxygen uptake related to fat free mass and lean leg volume in trained runners. Br. J. Sports Med. 1976, 10, 223–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beermann, B.L.; Lee, D.G.; Almstedt, H.C.; McCormack, W.P. Nutritional Intake and Energy Availability of Collegiate Distance Runners. J. Am. Coll. Nutr. 2020, 39, 747–755. [Google Scholar] [CrossRef]
- Passos, B.N.; Lima, M.C.; Sierra, A.P.R.; Oliveira, R.A.; MacIel, J.F.S.; Manoel, R.; Rogante, J.I.; Pesquero, J.B.; Cury-Boaventura, M.F. Association of daily dietary intake and inflammation induced by marathon race. Mediat. Inflamm. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billat, V.; Lepretre, P.M.; Heugas, A.M.; Laurence, M.H.; Salim, D.; Koralsztein, J.P. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med. Sci. Sports Exerc. 2003, 35, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Bragada, J.A.J.A.; Santos, P.J.; Maia, J.A.J.A.; Colaco, P.J.; Lopes, V.P.V.P.; Barbosa, T.M.; Colaço, P.J.; Lopes, V.P.V.P.; Barbosa, M. Longitudinal study in 3,000 m male runners: Relationship between performance and selected physiological parameters. J. Sport. Sci. Med. 2010, 9, 439–444. [Google Scholar]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos: Guía de Prácticas; Pirámide: Madrid, Spain, 2016; ISBN 9788436836233. [Google Scholar]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Society for the Advancement of Kinantropometry. Int. Stand. Anthr. Assessment. Aust. Low. Hutt New Zeal. Int. Soc. Adv. Kinanthropometry 2001, 1, 57–72. [Google Scholar]
- Porta, J.; Galiano, D.; Tejedo, A.; González, J.M. Valoración de la composición corporal. Utopías y realidades. Esparza Ros F. Ed. Man. Cineantropometría. Monogr. FEMEDE. Madrid FEMEDE 1993, 1993, 113–170. [Google Scholar]
- Niemela, K.; Palatsi, I.; Takkunen, J. The oxygen uptake—Work-output relationship of runners during graded cycling exercise: Sprinters vs. endurance runners. Br. J. Sports Med. 1980, 14, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, J.S.; Mclellan, T.H.; McLellan, T.H. The Transition from Aerobic to Anaerobic Metabolism. Res. Q. Exerc. Sport 1980, 51, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Saunders, P.U.; Cox, A.J.; Hopkins, W.G.; Pyne, D.B. Physiological measures tracking seasonal changes in peak running speed. Int. J. Sports Physiol. Perform. 2010, 5, 230–238. [Google Scholar] [CrossRef]
- Parmar, A.; Jones, T.W.; Hayes, P.R. The dose-response relationship between interval-training and VO 2max in well-trained endurance runners: A systematic review. J. Sports Sci. 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. A five year physiological case study of an Olympic runner. Br. J. Sports Med. 1998, 32, 39–43. [Google Scholar] [CrossRef]
- Knechtle, B. Relationship of anthropometric and training characteristics with race performance in endurance and ultra-endurance athletes. Asian J. Sports Med. 2014, 5, 73–90. [Google Scholar] [CrossRef]
- Vernillo, G.; Schena, F.; Berardelli, C.; Rosa, G.; Galvani, C.; Maggioni, M.; Agnello, L.; La Torre, A. Anthropometric characteristics of top-class Kenyan marathon runners. J. Sports Med. Phys. Fit. 2013, 53, 403–408. [Google Scholar]
- Boughman, J.K.; Masters, M.A.; Morgan, C.A.; Ruden, T.M.; Rochelle, S.G. Assessing the Validity of Bioelectrical Impedance and Skinfold Calipers for Measuring Body Composition in NOLS Backcountry Hikers. Wilderness Environ. Med. 2019, 30, 369–377. [Google Scholar] [CrossRef]
- Lucia, A.; Esteve-Lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro-Viña, C.; Foster, C. Physiological characteristics of the best Eritrean runners-exceptional running economy. Appl. Physiol. Nutr. Metab. 2006, 31, 530–540. [Google Scholar] [CrossRef]
- Stellingwerff, T. Case Study: Body Composition Periodization in an Olympic-Level Female Middle-Distance Runner Over a 9-Year Career. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 428–433. [Google Scholar] [CrossRef]
- Nicholson, R.M.; Sleivert, G.G. Indices of lactate threshold and their relationship with 10-km running velocity. Med. Sci. Sports Exerc. 2001, 33, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.J.; Steudel, K. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 1985, 116, 363–373. [Google Scholar]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Santos-Concejero, J.; González-Ravé, J.M. Influence of Shoe Mass on Performance and Running Economy in Trained Runners. Front. Physiol. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sport. Med. 2018, 48, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.B.; Naves, J.P.A.; Coswig, V.S.; De Lira, C.A.B.; Steele, J.; Fisher, J.P.; Gentil, P. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br. J. Sports Med. 2019, 53, 655–664. [Google Scholar] [CrossRef]
- Denadai, B.S.; Ortiz, M.J.; Greco, C.C.; De Mello, M.T. Interval training at 95% and 100% of the velocity at VO2 max: Effects on aerobic physiological indexes and running performance. Appl. Physiol. Nutr. Metab. 2006, 31, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R.W.; Toomey, C.; McCormack, W.; O’Neill, C.; Hughes, K.; Jakeman, P. Seasonal changes in body composition of inter-county Gaelic Athletic Association hurlers. J. Sports Sci. 2017, 35, 2427–2432. [Google Scholar] [CrossRef]
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef] [Green Version]
- Kenneally, M.; Casado, A.; Santos-Concejero, J. The effect of periodization and training intensity distribution on middle-and long-distance running performance: A systematic review. Int. J. Sports Physiol. Perform. 2018, 13, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Fudge, B.W.; Pringle, J.S. Training Distribution, Physiological Profile, and Performance for a Male International 1500-m Runner. Int. J. Sports Physiol. Perform. 2012, 7, 193–195. [Google Scholar] [CrossRef]
- Seiler, S.; Tønnessen, E. Intervals, Thresholds, and Long Slow Distance: The Role of Intensity and Duration in Endurance Training. Training 2009, 13, 32–53. [Google Scholar]
- Cipryan, L. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. J. Hum. Kinet. 2017, 56, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; de Oliveira, L.F.; Saito, T.; Klosterhoff, R.; Perim, P.; Dolan, E.; Pereira, R.M.R.; Campos-Ferraz, P.; Lima, F.R.; Saunders, B. Reduced Endurance Capacity and Suboptimal Energy Availability in Top-Level Female Cyclists. Int. J. Sports Physiol. Perform. 2020, 1–10. [Google Scholar] [CrossRef]
- Taipale, R.S.; Mikkola, J.; Nummela, A.; Vesterinen, V.; Capostagno, B.; Walker, S.; Gitonga, D.; Kraemer, W.J.; Hakkinen, K.; Häkkinen, K. Strength Training in Endurance Runners. Int. J. Sports Med. 2010, 31, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.C.; Howatson, G.; Hayes, P.R. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sport. Med. 2018, 48, 1117–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickner, R.C.; Mehta, P.M.; Dyck, D.; Devita, P.; Houmard, J.A.; Koves, T.; Byrd, P. Relationship between fat-to-fat-free mass ratio and decrements in leg strength after downhill running. J. Appl. Physiol. 2001, 90, 1334–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Training Load | Initial | 3 Months | 6 Months | 9 Months |
---|---|---|---|---|
Total (km/week) | 85.12 ± 13.1 | 106.52 ± 15.78 | 93.53 ± 14.56 | 74.55 ± 13.8 |
>VT2 (km/week) | 4.10 ± 0.5 | 12.68 ± 2.03 | 18.66 ± 2.8 | 16.45 ± 3.1 |
≤VT2 (km/week) | 81.02 ± 12.6 | 93.84 ± 13.75 | 74.87 ±11.4 | 58.10 ± 10.7 |
Parameters | Initial | 3 Months | 6 Months | 9 Months | ηp2 |
---|---|---|---|---|---|
Energy (kcal/d) | 2855 ± 511.3 | 2795.4 ± 427.2 | 2902.4 ± 522.5 | 3108.7 ± 770.2 | 0.07 |
CH (g/kg/d) | 5.26 ± 1.21 | 5.28 ± 1.14 | 6.25 ± 1.38 | 6.13 ± 1.50 | 0.03 |
Protein (g/kg/d) | 1.73 ± 0.79 | 1.69 ± 0.35 | 1.85 ± 0.53 | 1.89 ± 0.63 | 0.05 |
Lipids (g/kg/d) | 1.78 ± 0.40 | 1.63 ± 0.28 | 1.58 ± 0.52 | 1.72 ± 0.74 | 0.05 |
Parameters | Initial (M ± SD) | 3 Months (M ± SD) | 6 Months (M ± SD) | 9 Months (M ± SD) | p | F | ηp2 |
---|---|---|---|---|---|---|---|
(CI 95%) SEM | (CI 95%) SEM | (CI 95%) SEM | (CI 95%) SEM | ||||
VO2 max (mL/kg/min) | 68.02 ± 4.73 (65.80–70.23) 1.05 | 67.72 ± 9.76 (65.14–71.83) 1.59 | 68.65 ± 7.14 (65.66–72.06) 1.53 | 68.80 ± 7.50 (65.29–72.31) 1.67 | 0.306 | 1.269 | 0.07 |
VT2 (% VO2 max) | 91.02 ± 2.43 (89.86–92.19) 0.55 | 91.49 ± 3.59 (91.02–94.48) 0.82 | 91.34 ± 3.08 (89.85–92.46) 0.62 | 90.96 ± 2.07 (89.27–92.05) 0.42 | 0.675 | 0.511 | 0.04 |
vVO2 max (Km/h) | 20.20 ± 0.98 (19.68–20.61) 0.22 | 20.90 ± 1.13 ** (20.24–21.33) 0.26 | 20.71 ± 1.22 ** (20.15–21.27) 0.26 | 20.67 ± 1.75 (19.82–21.47) 0.39 | 0.095 | 2.071 | 0.12 |
vVT2 (Km/h) | 19.27 ± 0.80 (18.45–20.06) 0.19 | 20.00 ± 0.89 ** (19.19–20.36) 0.16 | 19.65 ± 1.27 (18.81–19.89) 0.21 | 19.41 ± 1.65 (18.14–20.33) 0.28 | 0.182 | 1.889 | 0.08 |
RER | 1.05 ± 0.03 (1.03–1.07) 0.00 | 1.05 ± 0.05 (1.03–1.07) 0.00 | 1.05 ± 0.04 (1.02–1.07) 0.01 | 1.04 ± 0.04 (1.03–1.06) 0.01 | 0.877 | 0.088 | 0.02 |
Maximum heart rate | 190.6 ± 9.45 (185.4–193.7) 1.97 | 192.9 ± 8.01 (190.9–198.3) 1.77 | 193.3 ± 8.95 (189.1–196.8) 1.85 | 193.8 ± 7.52 (189.1–197.3) 1.95 | 0.786 | 0.485 | 0.04 |
Distance (m) | 4543.3 ±42.1 (4346–4740) 94.16 | 4608.6 ± 49.8 (4338–4800) 109.9 | 4677.0 ± 56.2 (4450–4970) 124.77 | 4720.7 ± 65.9 (4416–5025) 145.54 | 0.423 | 0.790 | 0.06 |
Time (min) | 20.30 ± 1.85 (19.45–21.18) 0.41 | 21.00 ± 2.17 (19.98–22.13) 0.51 | 21.10 ± 2.04 (20.17–21.99) 0.43 | 20.70 ± 2.67 (19.47–21.97) 0.59 | 0.709 | 0.141 | 0.03 |
Parameters | Initial (M ± SD) | 3 Months (M ± SD) | 6 Months (M ± SD) | 9 Months (M ± SD) | p | F | ηp2 |
---|---|---|---|---|---|---|---|
(CI 95%) SEM | (CI 95%) SEM | (CI 95%) SEM | (CI 95%) SEM | ||||
Body mass (kg) | 65.35 ± 7.46 (61.85–68.83) 1.66 | 65.31 ± 7.53 (61.26–68.42) 1.70 | 64.58 ± 7.21 # (61.69–68.37) 1.60 | 64.59 ± 7.47 # (61.09–68.08) 1.67 | 0.030 | 2.557 | 0.21 |
Bone mass (kg) | 11.96 ± 1.02 (11.49–12.44) 0.22 | 11.84 ± 1.09 (11.27–12.34) 0.25 | 11.96 ± 1.13 (11.47–12.48) 0.24 | 11.98 ± 1.09 (11.4612.48) 0.24 | 0.950 | 0.096 | 0.02 |
Fat mass (kg) | 5.59 ± 1.27 (4.99–6.17) 0.28 | 5.41 ± 1.10 (4.83–6.10) 0.25 | 5.25 ± 0.86 * (4.89–5.68) 0.18 | 5.22 ± 0.99 * (4.87–5.77) 0.22 | 0.012 | 2.737 | 0.29 |
Muscle mass (kg) | 32.12 ± 4.09 (30.20–34.03) 0.91 | 32.26 ± 4.09 (30.04–33.90) 0.91 | 31.71 ± 4.00 (30.12–33.85) 0.89 | 31.72 ± 4.16 * (29.77–33.26) 0.93 | 0.072 | 2.433 | 0.15 |
Abdominal S. (mm) | 9.70 ± 2.65 (8.46–10.93) 0.59 | 9.87 ± 2.82 (8.45–11.24) 0.66 | 8.22 ± 1.86 ** (7.45–9.16) 0.40 | 8.84 ± 2.34 # (7.73–9.93) 0.52 | 0.021 | 2.776 | 0.26 |
Suprailiac S. (mm) | 5.68 ± 1.27 (5.08–6.27) 0.28 | 6.14 ± 0.88 (5.67–6.52) 0.20 | 5.51 ± 0.98 (5.05–6.08) 0.21 | 5.99 ± 1.17 (5.44–6.53) 0.26 | 0.276 | 1.749 | 0.08 |
Subscapular S. (mm) | 8.23 ± 1.53 (7.51–8.94) 0.34 | 8.40 ± 1.94 (7.45–9.37) 0.45 | 7.87 ± 1.39 (7.26–8.50) 0.29 | 8.20 ± 1.66 (7.41–8.97) 0.37 | 0.785 | 0.355 | 0.04 |
Tricipital S. (mm) | 6.24 ± 1.58 (5.50–6.97) 0.35 | 6.06 ± 1.34 (5.36–6.68) 0.31 | 5.98 ± 1.35 (5.40–6.61) 0.28 | 6.52 ± 1.72 (5.70–7.32) 0.38 | 0.689 | 0.292 | 0.03 |
Front Thigh S. (mm) | 8.48 ± 3.12 (7.01–9.93) 0.69 | 8.76 ± 2.88 (7.30–10.14) 0.67 | 8.67 ± 2.64 (7.52–9.87) 0.56 | 8.18 ± 2.30 (7.10–9.25) 0.51 | 0.717 | 0.169 | 0.03 |
Calf S. (mm) | 8.26 ± 3.15 (6.77–9.54) 0.65 | 6.70 ± 2.09 ** (5.59–7.62) 0.48 | 8.65 ± 2.44 ## (7.54–9.53) 0.47 | 7.74 ± 2.15 * ## (6.73–8.74) 0.48 | 0.023 | 2.617 | 0.26 |
∑ 6 skinfolds (mm) | 46.59 ±11.11 (41.35–51.61) 2.44 | 45.92 ± 8.80 (41.30–50.14) 2.10 | 44.89 ±7.60 (41.62–48.41) 1.62 | 45.46 ± 8.54 (41.46–49.44) 1.90 | 0.764 | 0.293 | 0.04 |
Arm P. (cm) | 27.61 ±2.37 (26.49–28.71) 0.53 | 27.54 ± 2.49 (26.30–28.76) 0.58 | 27.11 ±2.39 (26.07–28.19) 0.50 | 27.09 ± 2.67 (25.83–28.33) 0.59 | 0.513 | 0.433 | 0.05 |
Leg P. (cm) | 36.20 ± 2.01 (35.25–37.14) 0.44 | 36.25 ± 1.88 (35.22–36.96) 0.41 | 36.14 ±1.76 (35.44–37.11) 0.40 | 36.03 ± 1.99 (35.09–36.95) 0.44 | 0.575 | 0.431 | 0.04 |
Parameters | VO2 max (mL/kg/min) | vVO2 max (km/h) | ||||||
---|---|---|---|---|---|---|---|---|
r | R2 | β | p | r | R2 | β | p | |
Fat mass (kg) | −0.405 | 0.164 | −2.831 | <0.001 | −0.291 | 0.084 | −0.361 | 0.009 |
Muscle mass (kg) | −0.195 | 0.038 | −0.358 | 0.083 | 0.016 | 0.000 | 0.005 | 0.888 |
Bone mass (kg) | −0.168 | 0.028 | −1.033 | 0.135 | 0.039 | 0.002 | 0.049 | 0.728 |
∑ 6 skinfolds (mm) | −0.429 | 0.184 | −0.353 | <0.001 | −0.424 | 0.180 | −0.062 | <0.001 |
VT2 (% VO2 max) | vVT2 (km/h) | |||||||
r | R2 | β | p | r | R2 | β | p | |
Fat mass (kg) | 0.035 | 0.001 | 0.092 | 0.760 | −0.034 | 0.001 | −0.036 | 0.763 |
Muscle mass (kg) | 0.001 | 0.000 | 0.000 | 0.996 | 0.122 | 0.015 | 0.033 | 0.282 |
Bone mass (kg) | 0.044 | 0.002 | 0.115 | 0.700 | 0.096 | 0.009 | 0.092 | 0.396 |
∑ 6 skinfolds (mm) | −0.050 | 0.002 | −0.016 | 0.661 | −0.056 | 0.003 | −0.007 | 0.620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, J.; Barrientos, G.; Toro, V.; Sánchez, E.; Muñoz, D.; Maynar, M. Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season. Int. J. Environ. Res. Public Health 2021, 18, 2782. https://doi.org/10.3390/ijerph18052782
Alves J, Barrientos G, Toro V, Sánchez E, Muñoz D, Maynar M. Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season. International Journal of Environmental Research and Public Health. 2021; 18(5):2782. https://doi.org/10.3390/ijerph18052782
Chicago/Turabian StyleAlves, Javier, Gema Barrientos, Víctor Toro, Esther Sánchez, Diego Muñoz, and Marcos Maynar. 2021. "Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season" International Journal of Environmental Research and Public Health 18, no. 5: 2782. https://doi.org/10.3390/ijerph18052782
APA StyleAlves, J., Barrientos, G., Toro, V., Sánchez, E., Muñoz, D., & Maynar, M. (2021). Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season. International Journal of Environmental Research and Public Health, 18(5), 2782. https://doi.org/10.3390/ijerph18052782