Benefits of Regular Table Tennis Practice in Body Composition and Physical Fitness Compared to Physically Active Children Aged 10–11 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Physical Fitness
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohl, H.W., III; Cook, H.D. (Eds.) Physical Activity and Physical Education: Relationship to Growth, Development, and Health. In Educating the Student Body: Taking Physical Activity and Physical Education to School; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Telama, R.; Yang, X.; Leskinen, E.; Kankaanpää, A.; Hirvensalo, M.; Tammelin, T.; Viikari, J.S.A.; Raitakari, O.T. Tracking of physical activity from early childhood through youth into adulthood. Med. Sci. Sports Exerc. 2014, 46, 955–962. [Google Scholar] [CrossRef]
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.R.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M.; et al. Evidence based physical activity for school-age youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef]
- Scully, D. Physical exercise and psychological well being: A critical review. Br. J. Sports Med. 1998, 32, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Viña, J.; Sanchis-Gomar, F.; Martinez-Bello, V.; Gomez-Cabrera, M.C. Exercise acts as a drug; The pharmacological benefits of exercise. Br. J. Pharmacol. 2012, 167, 1–12. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Ruegsegger, G.N.; Booth, F.W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Noon, M.; Lawson, C.; Hurst, J.; Eyre, E.L.J. The Effectiveness of a Primary School Based Badminton Intervention on Children’s Fundamental Movement Skills. Sports 2020, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.Y.; Chu, C.H.; Tsai, C.L.; Lo, S.Y.; Cheng, Y.W.; Liu, Y.J. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder. Res. Dev. Disabil. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Chen, M.D.; Tsai, H.Y.; Wang, C.C.; Wuang, Y.P. The effectiveness of racket-sport intervention on visual perception and executive functions in children with mild intellectual disabilities and borderline intellectual functioning. Neuropsychiatr. Dis. Treat. 2015, 11, 2287–2297. [Google Scholar]
- Biernat, E.; Buchholtz, S.; Krzepota, J. Eye on the ball: Table tennis as a pro-health form of leisure-time physical activity. Int. J. Environ. Res. Public Health 2018, 15, 738. [Google Scholar] [CrossRef] [Green Version]
- Pluim, B.M.; Groppel, J.L.; Miley, D.; Crespo, M.; Turner, M.S. Health benefits of tennis. Br. J. Sports Med. 2018, 52, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar]
- Schmidt, S.C.; Bosy-Westphal, A.; Niessner, C.; Woll, A. Representative body composition percentiles from bioelectrical impedance analyses among children and adolescents. The MoMo study. Clin. Nutr. 2019, 38, 2712–2720. [Google Scholar] [CrossRef]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; España-Romero, V.; Jiménez-Pavón, D.; Vicente-Rodriguez, G.; Moreno, L.A.; Manios, Y.; Béghin, L.; Ottevaere, C.; et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2011, 45, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristi-Montero, C.; Courel-Ibáñez, J.; Ortega, F.B.; Castro-Piñero, J.; Santaliestra-Pasias, A.; Polito, A.; Vanhelst, J.; Marcos, A.; Moreno, L.M.; Ruiz, J.R. Mediation role of cardiorespiratory fitness on the association between fatness and cardiometabolic risk in European adolescents: The HELENA study. J. Sport Health Sci. 2019, 1–9. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, C.; Shao, S.; Baker, J.S. Effects of table tennis multi-ball training on dynamic posture control. PeerJ 2019, 6, e6262. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, A.M.; Morel, E.A.; Gobatto, C.A. Physiological responses and characteristics of table tennis matches determined in official tournaments. J. Strength Cond. Res. 2010, 24, 942–949. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Kondric, M.; Knechtle, B.; Nikolaidis, P.T.; Sperlich, B. Energetic demand and physical conditioning of table tennis players. A study review. J. Sports Sci. 2018, 36, 724–731. [Google Scholar] [CrossRef]
- Pluta, B.; Galas, S.; Krzykała, M.; Andrzejewski, M. The motor and leisure time conditioning of young table tennis players’ physical fitness. Int. J. Environ. Res. Public Health 2020, 17, 5733. [Google Scholar] [CrossRef]
- Jeoung, B.J. Relationships of exercise with frailty, depression, and cognitive function in older women. J. Exerc. Rehabil. 2014, 10, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Naderi, A.; Degens, H.; Rezvani, M.H.; Shaabani, F. A retrospective comparison of physical health in regular recreational table tennis participants and sedentary elderly men. J. Musculoskelet. Neuronal Interact. 2018, 18, 200–207. [Google Scholar]
- Pollak, K.A.; Swenson, J.D.; Vanhaitsma, T.A.; Hughen, R.W.; Jo, D.; Light, K.C.; Schweinhardt, P.; Amann, M.; Light, A.R. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp. Physiol. 2014, 99, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Kondrič, M.; Zagatto, A.M.; Sekulić, D. The physiological demands of table tennis: A review. J. Sport. Sci. Med. 2013, 12, 362–370. [Google Scholar]
- Naderi, A.; Zagatto, A.M.; Akbari, F.; Sakinepoor, A. Body composition and lipid profile of regular recreational table tennis participants: A cross-sectional study of older adult men. Sport Sci. Health 2018, 14, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Marfell-Jones, M.J.; Stewart, A.D.; De Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Underlake, Austrailia, 2012; ISBN 0620362073. [Google Scholar]
- Carter, J.E.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge University Press: Cambridge, UK, 1990; ISBN 0521351170. [Google Scholar]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. In Techniques for Measuring Body Composition; Brozec, A., Hensche, A., Eds.; National Academy of Sciences: Washington, DC, USA, 1961; Volume 61, pp. 223–244. [Google Scholar]
- Würch, A. La femme et le sport. Med. Sport Fr. 1974, 4, 441–445. [Google Scholar]
- Rocha, M.S.L. Peso ósseo do brasileiro de ambos os sexos de 17 a 25 años. Arq. Anatomía E Antropol. 1975, 1, 445–451. [Google Scholar]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Withers, R.T.; Whittingham, N.O.; Norton, K.I.; La Forgia, J.; Ellis, M.W.; Crockett, A. Relative body fat and anthropometric prediction of body density of female athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 169–180. [Google Scholar] [CrossRef]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Ruiz, J.R.; España-Romero, V.; Ortega, F.B.; Sjöström, M.; Castillo, M.J.; Gutierrez, A. Hand Span Influences Optimal Grip Span in Male and Female Teenagers. J. Hand Surg. Am. 2006, 31, 1367–1372. [Google Scholar] [CrossRef]
- Hoeger, W.W.K.; Hopkins, D.R.; Button, S.; Palmer, T.A. Comparing the Sit and Reach with the Modified Sit and Reach in Measuring Flexibility in Adolescents. Pediatr. Exerc. Sci. 2016, 2, 156–162. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Chillon, P.; Ortega, F.B.; Montesinos, J.L.; Sjostrom, M.; Ruiz, J.R. Criterion-related validity of sit-and-reach and modified sit-and-reach test for estimating hamstring flexibility in children and adolescents aged 617 years. Int. J. Sports Med. 2009, 30, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.; Lambert, J.; Goulet, A.; Rowan, C.; Dinelle, Y. Aerobic capacity of 6 to 17-year-old Quebecois--20 meter shuttle run test with 1 minute stages. Can. J. Appl. Sport Sci. 1984, 9, 64–69. [Google Scholar] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In Proceedings of the Behavior Research Methods; Psychonomic Society Inc.: Chicago, IL, USA; Volume 39, pp. 175–191.
- Calbet, J.A.L.; Sanchis-Moysi, J.; Dorado, C.; Olmedillas, H.; Serrano-Sanchez, J.A. Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency. Eur. J. Appl. Physiol. 2010, 110, 83–90. [Google Scholar]
- Zagatto, A.M.; Milioni, F.; Freitas, I.F.; Arcangelo, S.A.; Padulo, J. Body composition of table tennis players: Comparison between performance level and gender. Sport Sci. Health 2016, 12, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Rodriguez, G.; Ara, I.; Perez-Gomez, J.; Serrano-Sanchez, J.A.; Dorado, C.; Calbet, J.A.L. High femoral bone mineral density accretion in prepubertal soccer players. Med. Sci. Sports Exerc. 2004, 36, 1789–1795. [Google Scholar] [CrossRef]
- Vicente-Rodríguez, G. How does exercise affect bone development during growth? Sport. Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Kelley, J.C.; Crabtree, N.; Zemel, B.S. Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges. Calcif. Tissue Int. 2017, 100, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Pradas, F.; de la Torre, A.; Carrasco, L.; Muñoz, D.; Courel-ibáñez, J.; González-Jurado, J.A. Anthropometric Profiles in Table Tennis Players: Analysis of Sex, Age, and Ranking. Appl. Sci. 2021, 11, 876. [Google Scholar] [CrossRef]
- Malina, R.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Beunen, G.; Thomis, M. Muscular strength development in children and adolescents. Pediatr. Exerc. Sci. 2000, 12, 174–197. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Peterson, M.D.; Garcia-Hermoso, A. Handgrip Strength and Ideal Cardiovascular Health among Colombian Children and Adolescents. J. Pediatr. 2016, 179, 82–89.e1. [Google Scholar] [CrossRef] [PubMed]
- Le Mansec, Y.; Dorel, S.; Hug, F.; Jubeau, M. Lower limb muscle activity during table tennis strokes. Sport. Biomech. 2018, 17, 442–452. [Google Scholar] [CrossRef]
- Castellar, C.; Pradas, F.; Carrasco, L.; De La Torre, A.; González-Jurado, J.A. Analysis of reaction time and lateral displacements in national level table tennis players: Are they predictive of sport performance? Int. J. Perform. Anal. Sport 2019, 19, 467–477. [Google Scholar] [CrossRef]
- Sofiene, K.; Hermassi, S.; Safa, K.; Passelergue, P. Effect of an Integrated Resistance Program Based Weightlifting Exercises on Improving Physical Performance of Young Table Elite’s Tennis Players. Adv. Phys. Educ. 2016, 06, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Zaferanieh, A.; Haghighi, A.H.; Kakhak, S.A.H.; Maleki, A.; Cè, E.; Esposito, F. Effect of ballistic and power training on performance adaptations of élite table tennis players. Sport Sci. Health 2020, 1–10. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sport. Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Storey, A.G.; Nelson, A.R.; Cronin, J.B. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scand. J. Med. Sci. Sport. 2019, 49, 484–503. [Google Scholar] [CrossRef] [PubMed]
- Courel-Ibáñez, J.; Hernández-Belmonte, A.; Cava-Martínez, A.; Pallarés, J.G. Familiarization and reliability of the isometric knee extension test for rapid force production assessment. Appl. Sci. 2020, 10, 4499. [Google Scholar] [CrossRef]
- Bravo-Sánchez, A.; Abián-Vicén, J.; Jiménez, F.; Abián, P. Influence of badminton practice on calcaneal bone stiffness and plantar pressure. Phys. Sportsmed. 2020, 48, 98–104. [Google Scholar] [CrossRef]
- Bravo-Sánchez, A.; Abián, P.; Jiménez, F.; Abián-Vicén, J. Myotendinous asymmetries derived from the prolonged practice of badminton in professional players. PLoS ONE 2019, 14, e0222190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beltran-Valls, M.R.; Skok, O.G.; Romero-Rodríguez, D. Interlimb Asymmetries in Youth Tennis Players: Relationships with Performance. J. Strength Cond. Res. 2020, 34, 2815–2823. [Google Scholar] [CrossRef]
- Chapelle, L.; Rommers, N.; Clarys, P.; D’Hondt, E.; Taeymans, J. Upper extremity bone mineral content asymmetries in tennis players: A systematic review and meta-analysis. J. Sports Sci. 2019, 37, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Palaiothodorou, D.; Antoniou, T.; Vagenas, G. Bone asymmetries in the limbs of children tennis players: Testing the combined effects of age, sex, training time, and maturity status. J. Sports Sci. 2020, 38, 2298–2306. [Google Scholar] [CrossRef]
- Groppel, J.L.; Roetert, E.P. Applied Physiology of Tennis. Sport. Med. 1992, 14, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Sherar, L.B.; Cumming, S.P.; Eisenmann, J.C.; Baxter-Jones, A.D.G.; Malina, R.M. Adolescent biological maturity and physical activity: Biology meets behavior. Pediatr. Exerc. Sci. 2010, 22, 332–349. [Google Scholar] [CrossRef] [Green Version]
Variable | Table Tennis | Physically Active | ||||||
---|---|---|---|---|---|---|---|---|
Boys | Girls | Boys | Girls | |||||
M ± SD | Range | M ± SD | Range | M ± SD | Range | M ± SD | Range | |
Anthropometry | ||||||||
Height (m) | 1.44 ± 0.06 | 1.31–1.57 | 1.45 ± 0.09 | 1.23–1.69 | 1.40 ± 0.08 | 1.22–1.56 | 1.39 ± 0.08 | 1.20–1.56 |
Weight (kg) | 37.1 ± 6.0 | 26.4–53.1 | 37.4 ± 7.4 | 23.2–56.6 | 36.4 ± 9.2 | 21.0–62.0 | 37.1 ± 9.4 | 22.0–64.0 |
BMI (kg·m−2) | 17.8 ± 2.1 | 14.6–23.7 | 17.7 ± 2.2 | 13.2–22.7 | 18.5 ± 3.6 | 13.1–32.0 | 18.9 ± 3.4 | 12.3–29.7 |
Skinfolds | ||||||||
Biceps (mm) | 6.8 ± 2.9 | 2.4–15.2 | 7.4 ± 3.7 | 3.0–17.2 | 6.7 ± 3.8 | 1.0–18.2 | 7.7 ± 3.5 | 2.4–20.4 |
Triceps (mm) | 12.9 ± 4.5 | 5.0–26.0 | 14.2 ± 4.9 | 8.0–27.0 | 12.9 ± 5.7 | 4.0–28.0 | 14.8 ± 5.0 | 5.0–27.0 |
Subscapular (mm) | 8.1 ± 3.1 | 3.6–16.3 | 9.5 ± 5.0 | 4.0–23.8 | 8.51 ± 5.9 | 3.2–29.0 | 9.7 ± 4.9 | 3.6–26.0 |
Suprailiac (mm) | 7.9 ± 3.7 | 30.0–21.1 | 8.7 ± 4.4 | 3.0–24.7 | 7.4 ± 4.9 | 1.6–24.6 | 8.9 ± 4.9 | 2.8–24.4 |
Abdominal (mm) | 12.9 ± 7.3 | 3.9–33.3 | 13.3 ± 6.5 | 4.3–31.6 | 12.6 ± 8.5 | 3.4–36.4 | 14.9 ± 7.7 | 3.2–37.2 |
Thigh (mm) | 21.0 ± 7.3 | 6.0–39.0 | 20.9 ± 6.4 | 10.0–42.0 | 18.4 ± 8.5 | 4.0–43.0 | 22.1 ± 7.0 | 7.0–39.0 |
Medial calf (mm) | 14.1 ± 5.5 | 5.2–29.6 | 14.5 ± 5.6 | 7.2–38.8 | 13.8 ± 7.4 | 3.0–38.0 | 16.9 ± 6.0 | 5.0–30.0 |
∑6 skinfolds (mm) | 76.9 ± 28.6 | 31.1–140.1 | 81.2 ± 29.7 | 46.5–163.0 | 73.7 ± 38.8 | 22.4–177.8 | 87.3 ± 32.4 | 32.6–169.6 |
∑trunk skinfolds (mm) | 28.9 ± 13.3 | 12.7–64.1 | 31.6 ± 15.1 | 13.9–72.4 | 28.6 ± 18.6 | 10.2–86.6 | 33.5 ± 16.9 | 9.6–79.6 |
Perimeters | ||||||||
Arm relaxed (cm) | 22.2 ± 2.3 | 19.0–27.0 | 22.4 ± 2.5 | 17.6–28.0 | 22.4 ± 2.5 | 17.6–28.0 | 22.9 ± 3.1 | 16.8–30.6 |
Calf (cm) | 29.9 ± 2.6 | 24.0–35.4 | 30.2 ± 2.9 | 22.6–37.0 | 29.1 ± 3.5 | 22.5–37.2 | 29.6 ± 3.5 | 21.4–37.5 |
Bone diameters | ||||||||
Wrist (mm) | 4.7 ± 0.3 | 4.0–5.5 | 4.6 ± 0.3 | 3.8–5.5 | 4.5 ± 0.2 | 3.7–5.2 | 4.4 ± 0.3 | 3.9–5.9 |
Femur (mm) | 8.8 ± 0.5 | 7.8–10.0 | 8.4 ± 0.4 | 7.4–9.5 | 8.3 ± 0.6 | 5.5–9.8 | 8.1 ± 0.5 | 5.4–9.8 |
Humerus (mm) | 5.7 ± 0.4 | 4.8–8.7 | 5.6 ± 0.3 | 4.9–6.6 | 5.6 ± 0.4 | 4.6–6.7 | 5.5 ± 0.3 | 4.7–6.8 |
Body composition | ||||||||
Muscular (kg) | 16.2 ± 2.4 | 11.7–23.8 | 15.7 ± 2.8 | 9.8–22.3 | 16.3 ± 3.7 | 9.1–27.3 | 15.9 ± 3.6 | 10.1–26.5 |
Fat (kg) | 4.6 ± 1.7 | 2.4–9.4 | 6.8 ± 2.7 | 3.1–16.1 | 4.7 ± 2.7 | 1.7–13.5 | 7.1 ± 3.4 | 2.9–19.3 |
Bone (kg) | 7.3 ± 0.9 | 5.5–9.8 | 7.1 ± 1.1 | 5.1–10.7 | 6.6 ± 1.0 | 4.2–8.9 | 6.3 ± 1.0 | 3.9–9.3 |
Muscular (%) | 43.8 ± 1.9 | 39.2–47.5 | 42.3 ± 2.9 | 32.9–46.7 | 45.0 ± 2.2 | 38.9–52.6 | 43.3 ± 3.0 | 34.4–51.7 |
Fat (%) | 12.2 ± 2.6 | 8.8–18.1 | 17.7 ± 4.1 | 13.0–28.5 | 12.1 ± 3.7 | 8.1–22.6 | 18.2 ± 4.5 | 11.1–30.2 |
Bone (%) | 16.2 ± 2.4 | 11.7–23.8 | 15.7 ± 2.8 | 9.8–22.3 | 16.3 ± 3.7 | 9.1–27.3 | 15.9 ± 3.6 | 10.1–26.5 |
Somatotype | ||||||||
Endomorph | 3.1 ± 1.2 | 0.9–5.9 | 3.4 ± 1.4 | 1.6–7.0 | 3.4 ± 1.7 | 0.9–8.1 | 4.0 ± 1.5 | 1.3–7.1 |
Mesomorph | 4.3 ± 1.2 | 0.6–6.8 | 4.0 ± 1.1 | 1.0–6.6 | 4.5 ± 1.2 | 2.0–8.5 | 4.4 ± 1.0 | 1.6–6.8 |
Ectomorph | 3.2 ± 1.2 | 0.7–6.0 | 3.3 ± 1.4 | 0.2–7.7 | 2.6 ± 1.4 | 0.1–5.7 | 2.3 ± 1.5 | 0.1–7.0 |
Physical fitness | ||||||||
VO2max (mL·kg−1·min−1) | 47.8 ± 3.4 | 39.6–56.9 | 45.5 ± 2.7 | 39.6–54.4 | 46.6 ± 3.7 | 38.8–54.9 | 44.3 ± 3.5 | 34.7–51.1 |
VO2max (L·min−1) | 1.77 ± 0.29 | 1.18–2.84 | 1.70 ± 0.35 | 1.01–2.54 | 1.67 ± 0.37 | 0.87–2.72 | 1.62 ± 0.35 | 0.85–2.45 |
Low-back ROM (cm) | 16.2 ± 4.8 | 7.0–30.0 | 20.7 ± 7.0 | 5.0–38.0 | 16.7 ± 5.8 | 3.0–37.0 | 18.7 ± 5.5 | 3.0–32.0 |
Handgrip strength (kg) | 18.7 ± 3.5 | 9.1–27.8 | 17.1 ± 2.8 | 11.0–22.8 | 17.1 ± 3.7 | 10.5–27.0 | 15.4 ± 3.9 | 8.0–28.5 |
Variable | Between-Group Differences | ANOVA p-Value | |||||
---|---|---|---|---|---|---|---|
Boys | Girls | Group | Sex | Sex × Group | |||
MD | 95% CI | MD | 95% CI | ||||
Anthropometry | |||||||
Height (m) | 0.04 | −0.10; 0.18 | 0.06 | −0.11; 0.23 | <0.001 * | 0.726 | 0.718 |
Weight (kg) | 0.60 | −0.96; 2.16 | 0.30 | −1.41; 2.01 | 0.554 | 0.541 | 0.838 |
BMI (kg·m−2) | −0.70 | −1.29; −0.11 | −1.20 | −1.78; −0.62 | 0.002 * | 0.533 | 0.416 |
Skinfolds | |||||||
Biceps (mm) | 0.10 | −0.94; 1.14 | −0.60 | −1.61; 0.41 | 0.731 | 0.022 * | 0.601 |
Triceps (mm) | −0.40 | −1.34; 0.54 | −0.20 | −1.21; 0.81 | 0.633 | 0.003 * | 0.538 |
Subscapular (mm) | 0.50 | −0.38; 1.38 | −0.20 | −1.15; 0.75 | 0.544 | 0.008 * | 0.759 |
Suprailiac (mm) | 0.30 | −1.31; 1.91 | −1.60 | −3.04; −0.16 | 0.787 | 0.013 * | 0.535 |
Abdominal (mm) | 2.60 | 0.97; 4.23 | −1.20 | −2.56; 0.16 | 0.402 | 0.095 | 0.227 |
Thigh (mm) | 0.30 | −1.02; 1.62 | −2.40 | −3.58; −1.22 | 0.377 | 0.019 * | 0.013 * |
Medial calf (mm) | 3.20 | −3.69; 10.09 | −6.10 | −12.41; 0.21 | 0.109 | 0.007 * | 0.041 * |
∑6 skinfolds (mm) | 0.30 | −2.96; 3.56 | −1.90 | −5.15; 1.35 | 0.671 | 0.009 * | 0.171 |
∑trunk skinfolds (mm) | 0.10 | −0.94; 1.14 | −0.60 | −1.61; 0.41 | 0.617 | 0.024 * | 0.514 |
Perimeters | |||||||
Arm relaxed (cm) | −0.20 | −0.69; 0.29 | −0.50 | −1.07; 0.07 | 0.260 | 0.238 | 0.668 |
Calf (cm) | −0.20 | −0.69; 0.29 | −0.50 | −1.07; 0.07 | 0.023 * | 0.257 | 0.775 |
Bone diameters | |||||||
Wrist (mm) | 0.02 | 0.01; 0.03 | 0.02 | 0.01; 0.03 | <0.001 * | 0.001 * | 0.445 |
Femur (mm) | 0.05 | 0.04; 0.06 | 0.03 | 0.02; 0.04 | <0.001 * | <0.001 * | 0.301 |
Humerus (mm) | 0.01 | 0.01; 0.02 | 0.01 | 0.01; 0.02 | <0.001 * | <0.001 * | 0.539 |
Body composition | |||||||
Muscular (kg) | −0.10 | −0.73; 0.53 | −0.20 | −0.85; 0.45 | 0.651 | 0.222 | 0.865 |
Fat (kg) | −0.10 | −0.55; 0.35 | −0.30 | −0.92; 0.32 | 0.550 | <0.001 * | 0.709 |
Bone (kg) | 0.70 | 0.51; 0.89 | 0.80 | 0.59; 1.01 | <0.001 * | 0.010 * | 0.743 |
Muscular (%) | −1.20 | −1.62; −0.78 | −1.00 | −1.60; −0.40 | <0.001 * | <0.001 * | 0.794 |
Fat (%) | 0.10 | −0.55; 0.75 | −0.50 | −1.37; 0.37 | 0.537 | <0.001 * | 0.456 |
Bone (%) | −0.10 | −0.73; 0.53 | −0.20 | −0.85; 0.45 | <0.001 * | <0.001 * | 0.408 |
Somatotype | |||||||
Endomorph | −0.30 | −0.60; 0.01 | −0.60 | −0.89; −0.31 | 0.002 * | 0.004 * | 0.239 |
Mesomorph | −0.20 | −0.44; 0.04 | −0.40 | −0.61; −0.19 | 0.026 * | 0.067 | 0.372 |
Ectomorph | 0.60 | 0.34; 0.86 | 1.00 | 0.71; 1.29 | <0.001 * | 0.403 | 0.202 |
Physical fitness | |||||||
VO2max (mL·kg−1·min−1) | 1.20 | 0.48; 1.92 | 1.20 | 0.57; 1.83 | 0.001 * | <0.001 * | 0.903 |
VO2max (L·min−1) | 0.10 | 0.03; 0.17 | 0.08 | 0.01; 0.15 | 0.021 * | 0.103 | 0.814 |
Low-back ROM (cm) | −0.50 | −1.58; 0.58 | 2.00 | 0.71; 3.29 | 0.184 | <0.001 * | 0.038 * |
Handgrip strength (kg) | 1.60 | 0.87; 2.33 | 1.70 | 1.01; 2.39 | <0.001 * | <0.001 * | 0.838 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradas, F.; Ara, I.; Toro, V.; Courel-Ibáñez, J. Benefits of Regular Table Tennis Practice in Body Composition and Physical Fitness Compared to Physically Active Children Aged 10–11 Years. Int. J. Environ. Res. Public Health 2021, 18, 2854. https://doi.org/10.3390/ijerph18062854
Pradas F, Ara I, Toro V, Courel-Ibáñez J. Benefits of Regular Table Tennis Practice in Body Composition and Physical Fitness Compared to Physically Active Children Aged 10–11 Years. International Journal of Environmental Research and Public Health. 2021; 18(6):2854. https://doi.org/10.3390/ijerph18062854
Chicago/Turabian StylePradas, Francisco, Ignacio Ara, Víctor Toro, and Javier Courel-Ibáñez. 2021. "Benefits of Regular Table Tennis Practice in Body Composition and Physical Fitness Compared to Physically Active Children Aged 10–11 Years" International Journal of Environmental Research and Public Health 18, no. 6: 2854. https://doi.org/10.3390/ijerph18062854
APA StylePradas, F., Ara, I., Toro, V., & Courel-Ibáñez, J. (2021). Benefits of Regular Table Tennis Practice in Body Composition and Physical Fitness Compared to Physically Active Children Aged 10–11 Years. International Journal of Environmental Research and Public Health, 18(6), 2854. https://doi.org/10.3390/ijerph18062854