Effects of Twelve Sessions of High-Temperature Sauna Baths on Body Composition in Healthy Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Sauna Baths
2.4. Health Security Protocol
2.5. Physical Activity Assessment
2.6. Nutritional Intake Assessment
2.7. Assessment of Body Composition
2.8. Statistical Analysis
3. Results
Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, J.; Cohen, M. Clinical Effects of Regular Dry Sauna Bathing: A Systematic Review. Evid. Based Complement. Altern. Med 2018. [Google Scholar] [CrossRef]
- Ghods, M.; Corterier, C.; Zindel, K.; Kiene, M.; Rudolf, K.; Steen, M. Hot air sauna burns. Burns 2008, 34, 122–124. [Google Scholar] [CrossRef]
- Kukkonen-Harjula, K.; Kauppinen, K. Health effects and risks of sauna bathing. Int. J. Circumpolar Health 2006, 65, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, J.; Laukkanen, T.; Kunutsor, S. Cardiovascular and other health benefits of sauna bathing: A review of the evidence. Mayo Clin. Proc. 2018, 93, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen, J.; Kunutsor, S. Is sauna bathing protective of sudden cardiac death? A review of the evidence. Prog. Cardiovasc. Dis. 2019, 62, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Leppaluoto, J.; Tuominen, M.; Vaananen, A.; Karpakka, J.; Vuori, J. Some cardiovascular and metabolic effects of repeated sauna bathing. Acta Physiol. Scand. 1986. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, T.; Khan, H.; Zaccardi, F.; Laukkanen, J.A. Association Between Sauna Bathing and Fatal Cardiovascular and All-Cause Mortality Events. JAMA Intern. Med. 2015, 175, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Periard, J.D.; Travers, G.J.S.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. Clin. 2016, 196, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Alonso, J. Human thermoregulation and the cardiovascular system. Exp. Physiol. 2012, 97, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Brouns, F. Heat-sweat-dehydration-rehydration: A praxis oriented approach. J. Sports Sci. 1991, 9, 143–152. [Google Scholar] [CrossRef]
- Sawka, M.N.; Montain, S.J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 2000, 72, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Podstawski, R.; Borysławski, K.; Clark, C.C.T.; Choszcz, D.; Finn, K.J.; Gronek, P. Correlations between Repeated Use of Dry Sauna for 4 x 10 Minutes, Physiological Parameters, Anthropometric Features, and Body Composition in Young Sedentary and Overweight Men: Health Implications. BioMed Res. Int. 2019. [Google Scholar] [CrossRef] [Green Version]
- Podstawski, R.; Boraczyński, T.; Boraczyński, M.; Choszcz, D.; Mańkowski, S.; Markowski, P. Sauna-induced body mass loss in young sedentary women and men. Sci. World J. 2014, 1–7. [Google Scholar] [CrossRef]
- Iguchi, M.; Littmann, A.E.; Chang, S.H.; Wester, L.A.; Knipper, J.S.; Shields, R.K. Heat Stress and Cardiovascular, Hormonal, and Heat Shock Proteins in Humans. J. Athl. Train. 2012, 47, 184–190. [Google Scholar] [CrossRef]
- Ohira, T.; Higashibata, A.; Seki, M.; Kurata, Y.; Kimura, Y.; Hirano, H.; Kusakari, Y.; Minamisawa, S.; Kudo, T.; Takahashi, S. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats. Physiol. Rep. 2017, 5, e13350. [Google Scholar] [CrossRef]
- Yoshihara, T.; Naito, H.; Kakigi, R.; Ichinoseki-Sekine, N.; Ogura, Y.; Sugiura, T.; Katamoto, S. Heat stress activates the A kt/m TOR signalling pathway in rat skeletal muscle. Acta Physiol. 2013, 207, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Hafen, P.S.; Abbott, K.; Bowden, J.; Lopiano, R.; Hancock, C.R.; Hyldahl, R.D. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization. J. Appl. Physiol. 2019, 127, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.S.; Beaudoin, M.-S.; Wheatley, J.L.; Wright, D.C.; Geiger, P.C. Heat shock proteins: In vivo heat treatments reveal adipose tissue depot-specific effects. J. Appl. Physiol. 2015, 118, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Hang, K.; Ye, C.; Chen, E.; Zhang, W.; Xue, D.; Pan, Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones 2018, 23, 1153–1164. [Google Scholar] [CrossRef]
- Ota, T.; Nishida, Y.; Ikuta, K.; Kato, R.; Kozawa, E.; Hamada, S.; Sakai, T.; Ishiguro, N. Heat-stimuli-enhanced osteogenesis using clinically available biomaterials. PLoS ONE 2017, 12, e0181404. [Google Scholar] [CrossRef] [Green Version]
- Serrat, M.A.; Schlierf, T.J.; Efaw, M.L.; Shuler, F.D.; Godby, J.; Stanko, L.M.; Tamski, H.L. Unilateral heat accelerates bone elongation and lengthens extremities of growing mice. J. Orthop. Res. 2015, 33, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Effect of heat exposure and physical exercise until exhaustion in normothermic and hyperthermic conditions on serum, sweat and urinary concentrations of magnesium and phosphorus. J. Therm. Biol. 2019, 84, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos: Guía de Prácticas; Pirámide: Madrid, Spain, 2016. [Google Scholar]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Podstawski, R.; Boraczyński, T.; Boraczyński, M.; Choszcz, D.; Mańkowski, S.; Markowski, P. Sauna-induced body mass loss in physically inactive young women and men. Biomed. Hum. Kinet. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, R.; Fujiwara, Y.; Saito, K.; Fukaya, T.; Kim, M.; Yasunaga, M.; Kim, H.; Ogawa, K.; Tanaka, C.; Tsunoda, N. Effects of a comprehensive intervention program, including hot bathing, on overweight adults: A randomized controlled trial. Geriatr. Gerontol. Int. 2013, 13, 638–645. [Google Scholar] [CrossRef]
- Seron, P.; Munoz, S.; Lanas, F. Levels of physical activity in an urban population from temuco, chile. Rev. Med. Chil. 2010, 138, 1232–1239. [Google Scholar] [PubMed]
- Gryka, D.; Pilch, W.; Szarek, M.; Szygula, Z.; Tota, L. The effect of sauna bathing on lipid profile in young, physically active, male subjects. Int. J. Occup. Med. Environ. Health 2014, 27, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Oda, H.; Morioka, S.; Naito, T.; Akema, T.; Kato, H.; Fujiya, H.; Nakajima, Y.; Sugiura, T.; Ohira, Y. Skeletal Muscle Hypertrophy Induced by Low-Intensity Exercise with Heat-Stress in Healthy Human Subjects. Jpn. J. Aerosp. Environ. Med. 2007, 44, 13–18. [Google Scholar]
- Stadnyk, A.M.J.; Rehrer, N.J.; Handcock, P.J.; Meredith-Jones, K.A.; Cotter, J.D. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature 2018, 5, 175–183. [Google Scholar] [CrossRef]
- Glazachev, O.S.; Kofler, W.; Dudnik, E.N.; Zapara, M.A.; Samartseva, V.G. Effect of Adaptation to Passive Hyperthermia on Aerobic Performance and Cardio-Respiratory Endurance in Amateur Athletes. Hum. Physiol. 2020, 46, 66–73. [Google Scholar] [CrossRef]
- Zapara, M.A.; Dudnik, E.N.; Samartseva, V.G.; Kryzhanovskaya, S.Y.; Susta, D.; Glazachev, O.S. Passive Whole-Body Hyperthermia Increases Aerobic Capacity and Cardio-Respiratory Efficiency in Amateur Athletes. Health 2020. [Google Scholar] [CrossRef] [Green Version]
- Kakigi, R.; Naito, H.; Ogura, Y.; Kobayashi, H.; Saga, N.; Ichinoseki-Sekine, N.; Yoshihara, T.; Katamoto, S. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J. Physiol. Sci. 2011, 61, 131–140. [Google Scholar] [CrossRef]
- Tamura, Y.; Hatta, H. Heat stress induces mitochondrial adaptations in skeletal muscle. J. Phys. Fit. Sport. Med. 2017, 6, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Giombini, A.; Giovannini, V.; Di Cesare, A.; Pacetti, P.; Ichinoseki-Sekine, N.; Shiraishi, M.; Naito, H.; Maffulli, N. Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. Br. Med. Bull. 2007, 83, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Shui, C.; Scutt, A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J. Bone Miner. Res. 2001, 16, 731–741. [Google Scholar] [CrossRef]
- Kajiya, H.; Katsumata, Y.; Sasaki, M.; Tsutsumi, T.; Kawaguchi, M.; Fukushima, T. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets. Int. J. Hyperth. 2015, 31, 635–642. [Google Scholar] [CrossRef]
- Chen, E.; Xue, D.; Zhang, W.; Lin, F.; Pan, Z. Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Lett. 2015, 589, 4088–4096. [Google Scholar] [CrossRef]
- Li, M.; Fuchs, S.; Böse, T.; Schmidt, H.; Hofmann, A.; Tonak, M.; Unger, R.; Kirkpatrick, C.J. Mild heat stress enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. Tissue Eng. Part C Methods 2014, 20, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Daanen, H.A.M.; Racinais, S.; Périard, J.D. Heat Acclimation Decay and Re-Induction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Ashley, C.D.; Ferron, J.; Bernard, T.E. Loss of heat acclimation and time to re-establish acclimation. J. Occup. Environ. Hyg. 2015, 12, 302–308. [Google Scholar] [CrossRef]
- Garrett, A.T.; Goosens, N.G.; Rehrer, N.G.; Patterson, M.J.; Cotter, J.D. Induction and decay of short-term heat acclimation. Eur. J. Appl. Physiol. 2009, 107, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Duvnjak-Zaknich, D.M.; Wallman, K.E.; Dawson, B.T.; Peeling, P. Continuous and intermittent heat acclimation and decay in team sport athletes. Eur. J. Sport Sci. 2019, 19, 295–304. [Google Scholar] [CrossRef]
SG (n = 12) | CG (n = 11) | |
---|---|---|
Age (years) | 19.7 ± 1.5 | 20.3 ± 2.1 |
Weight (kg) | 66.0 ± 9.7 | 66.4 ± 7.4 |
Height (m) | 1.7 ± 0.1 | 1.7 ± 0.1 |
BMI (kg/m2) | 22.0 ± 1.9 | 23.4 ± 1.8 |
Beginning | After 12 Sessions | Decay | Differences | p | ||
---|---|---|---|---|---|---|
Total physical activity(Met-min/week) | SG | 1523.5 (324.1) | 1645.6 (367.4) | 1671.2 (341.6) | Beginning vs. after 12 sessions | 0.418 |
Beginning vs. Decay | 0.376 | |||||
After 12 sessions vs. Decay | 0.612 | |||||
CG | 1478.3 (402.2) | 1511.6 (429.8) | 1532.2 (422.1) | Beginning vs. after 12 sessions | 0.537 | |
Beginning vs. Decay | 0.478 | |||||
After 12 sessions vs. Decay | 0.490 | |||||
Sitting time (h/week) | SG | 6.21 (1.1) | 6.0 (1.2) | 6.1 (1.3) | Beginning vs. after 12 sessions | 0.311 |
Beginning vs. Decay | 0.297 | |||||
After 12 sessions vs. Decay | 0.566 | |||||
CG | 6.1 (1.4) | 6.3 (1.4) | 6.2 (1.2) | Beginning vs. after 12 sessions | 0.325 | |
Beginning vs. Decay | 0.502 | |||||
After 12 sessions vs. Decay | 0.382 |
Beginning | After 12 Sessions | Decay | Differences | p | ||
---|---|---|---|---|---|---|
Energy (Kcal/day) | SG | 1584.2 (326.4) | 1476.3 (367.1) | 1561.3 (356.6) | Beginning vs. after 12 sessions | 0.436 |
Beginning vs. Decay | 0.503 | |||||
After 12 sessions vs. Decay | 0.310 | |||||
CG | 1634.4 (294.6) | 1574.1 (268.2) | 1780.4 (283.1) | Beginning vs. after 12 sessions | 0.421 | |
Beginning vs. Decay | 0.545 | |||||
After 12 sessions vs. Decay | 0.561 | |||||
Proteins (g/day) | SG | 78.3 (18.4) | 69.2 (15.6) | 76.4 (16.7) | Beginning vs. after 12 sessions | 0.280 |
Beginning vs. Decay | 0.514 | |||||
After 12 sessions vs. Decay | 0.389 | |||||
CG | 75.1 (14.2) | 70.4 (15.7) | 76.3 (16.4) | Beginning vs. after 12 sessions | 0.312 | |
Beginning vs. Decay | 0.678 | |||||
After 12 sessions vs. Decay | 0.221 | |||||
Lipids (g/day) | SG | 57.3 (18.5) | 48.4 (16.8) | 49.7 (17.3) | Beginning vs. after 12 sessions | 0.158 |
Beginning vs. Decay | 0.124 | |||||
After 12 sessions vs. Decay | 0.638 | |||||
CG | 61.4 (15.4) | 52.4 (16.6) | 50.8 (15.3) | Beginning vs. after 12 sessions | 0.196 | |
Beginning vs. Decay | 0.102 | |||||
After 12 sessions vs. Decay | 0.534 | |||||
HCO (g/day) | SG | 204.4 (53.1) | 185.3 (65.21) | 183.7 (61.23) | Beginning vs. after 12 sessions | 0.268 |
Beginning vs. Decay | 0.221 | |||||
After 12 sessions vs. Decay | 0.554 | |||||
CG | 198.8 (26.1) | 193.7 (25.7) | 197.8 (26.3) | Beginning vs. after 12 sessions | 0.452 | |
Beginning vs. Decay | 0.698 | |||||
After 12 sessions vs. Decay | 0.412 |
Beginning | After 12 sessions | Decay | p | ES | |||
---|---|---|---|---|---|---|---|
Weight (Kg) | SG | 64.2 (29.0) | 64.1 (31.9) | 64.4 (29.0) | Beginning vs. after 12 sessions | 0.530 | 0.13 |
Beginning vs. Decay | 0.628 | 0.10 | |||||
After 12 sessions vs. Decay | 0.782 | 0.06 | |||||
CG | 65.1 (28.3) | 66.3 (29.5) | 66.1 (28.2) | Beginning vs. after 12 sessions | 0.518 | 0.12 | |
Beginning vs. Decay | 0.410 | 0.22 | |||||
After 12 sessions vs. Decay | 0.612 | 0.09 | |||||
Fat mass (kg) | SG | 9.6 (1.6) | 9.8 (1.5) | 9.9 (1.6) | Beginning vs. after 12 sessions | 0.480 | 0.20 |
Beginning vs. Decay | 0.454 | 0.22 | |||||
After 12 sessions vs. Decay | 0.608 | 0.09 | |||||
CG | 10.4 (2.1) | 11.7 (2.7) | 12.1 (2.3) | Beginning vs. after 12 sessions | 0.281 | 0.31 | |
Beginning vs. Decay | 0.207 | 0.35 | |||||
After 12 sessions vs. Decay | 0.382 | 0.26 | |||||
Fat mass without head (Kg) | SG | 8.6 (1.6) | 8.8 (1.5) | 8.9 (1.6) | Beginning vs. after 12 sessions | 0.520 | 0.10 |
Beginning vs. Decay | 0.543 | 0.13 | |||||
After 12 sessions vs. Decay | 0.618 | 0.07 | |||||
CG | 9.2 (1.4) | 10.0 (1.5) | 10.3 (1.4) | Beginning vs. after 12 sessions | 0.378 | 0.17 | |
Beginning vs. Decay | 0.232 | 0.33 | |||||
After 12 sessions vs. Decay | 0.413 | 0.24 | |||||
Fat mass (%) | SG | 14.5 (1.9) | 14.5 (2.0) | 14.0 (2.1) | Beginning vs. after 12 sessions | 0.814 | 0.04 |
Beginning vs. Decay | 0.875 | 0.03 | |||||
After 12 sessions vs. Decay | 0.695 | 0.06 | |||||
CG | 15.7 (2.4) | 16.4 (2.1) | 16.0 (2.7) | Beginning vs. after 12 sessions | 0.421 | 0.23 | |
Beginning vs. Decay | 0.478 | 0.20 | |||||
After 12 sessions vs. Decay | 0.402 | 0.24 | |||||
Muscle mass (Kg) | SG | 55.6 (32.8) | 55.7 (30.8) | 56.2 (30.6) | Beginning vs. after 12 sessions | 0.388 | 0.25 |
Beginning vs. Decay | 0.286 | 0.33 | |||||
After 12 sessions vs. Decay | 0.458 | 0.21 | |||||
CG | 52.2 (29.6) | 51.8 (28.4) | 52.4 (28.2) | Beginning vs. after 12 sessions | 0.389 | 0.25 | |
Beginning vs. Decay | 0.411 | 0.22 | |||||
After 12 sessions vs. Decay | 0.521 | 0.10 | |||||
Right leg muscle mass (%) | SG | 9.5 (5.6) | 9.5 (5.4) | 10.5 (5.1) | Beginning vs. after 12 sessions | 0.554 | 0.09 |
Beginning vs. Decay | 0.035 | 0.64 | |||||
After 12 sessions vs. Decay | 0.042 | 0.60 | |||||
CG | 10.6 (4.7) * | 10.5 (4.3) * | 10.2 (4.2) | Beginning vs. after 12 sessions | 0.578 | 0.09 | |
Beginning vs. Decay | 0.632 | 0.09 | |||||
After 12 sessions vs. Decay | 0.591 | 0.08 | |||||
Right leg fat mass (Kg) | SG | 1.4 (0.6) | 1.5 (0.5) | 1.5 (0.5) | Beginning vs. after 12 sessions | 0.533 | 0.09 |
Beginning vs. Decay | 0.737 | 0.05 | |||||
After 12 sessions vs. DA | 0.695 | 0.09 | |||||
CG | 1.8 (0.1) | 1.7 (0.3) | 1.7 (0.5) | Beginning vs. after 12 sessions | 0.732 | 0.06 | |
Beginning vs. Decay | 0.490 | 0.19 | |||||
After 12 sessions vs. Decay | 0.412 | 0.12 | |||||
Left leg muscle mass (%) | SG | 7.7 (1.1) | 7.8 (1.1) | 7.8 (1.0) | Beginning vs. after 12 sessions | 0.308 | 0.29 |
Beginning vs. Decay | 0.291 | 0.30 | |||||
After 12 sessions vs. Decay | 0.621 | 0.09 | |||||
CG | 8.1 (1.0) | 8.1 (1.1) | 8.1 (1.0) | Beginning vs. after 12 sessions | 0.653 | 0.08 | |
Beginning vs. Decay | 0.734 | 0.06 | |||||
After 12 sessions vs. Decay | 0.658 | 0.08 | |||||
Left leg fat mass (kg) | SG | 1.9 (0.3) | 1.8 (0.3) | 1.8 (0.3) | Beginning vs. after 12 sessions | 0.533 | 0.07 |
Beginning vs. Decay | 0.581 | 0.07 | |||||
After 12 sessions vs. Decay | 0.795 | 0.05 | |||||
CG | 1.8 (0.3) | 1.9 (0.3) | 1.9 (0.3) | Beginning vs. after 12 sessions | 0.635 | 0.08 | |
Beginning vs. Decay | 0.789 | 0.07 | |||||
After 12 sessions vs. Decay | 0.712 | 0.08 |
Beginning | After 12 Sessions | Decay | p | ES | |||
---|---|---|---|---|---|---|---|
BMC total (kg) | SG | 2.381 (1.05) | 2.352 (1.10) | 2.385 (0.98) | Beginning vs. after 12 sessions | 0.530 | 0.15 |
Beginning vs. Decay | 0.399 | 0.25 | |||||
After 12 sessions vs. Decay | 0.336 | 0.26 | |||||
CG | 2.405 (0.99) | 2.386 (1.01) | 2.391 (1.02) | Beginning vs. after 12 sessions | 0.645 | 0.08 | |
Beginning vs. Decay | 0.594 | 0.09 | |||||
After 12 sessions vs. Decay | 0.582 | 0.10 | |||||
BMC without head (kg) | SG | 1.900 (0.10) | 1.911 (0.10) | 1.898 (0.10) | Beginning vs. after 12 sessions | 0.688 | 0.07 |
Beginning vs. Decay | 0.754 | 0.06 | |||||
After 12 sessions vs. Decay | 0.639 | 0.07 | |||||
CG | 1.895 (0.09) | 1.902 (0.10) | 1.905 (0.11) | Beginning vs. after 12 sessions | 0.848 | 0.04 | |
Beginning vs. Decay | 0.743 | 0.06 | |||||
After 12 sessions vs. Decay | 0.652 | 0.08 | |||||
BMC left leg (kg) | SG | 0.470 (0.21) | 0.499 (0.22) | 0.484 (0.20) | Beginning vs. after 12 sessions | 0.033 | 0.65 |
Beginning vs. Decay | 0.158 | 0.38 | |||||
After 12 sessions vs. Decay | 0.447 | 0.21 | |||||
CG | 0.469 (0.23) | 0.470 (0.21) * | 0.476 (0.21) | Beginning vs. after 12 sessions | 0.703 | 0.07 | |
Beginning vs. Decay | 0.734 | 0.06 | |||||
After 12 sessions vs. Decay | 0.612 | 0.08 | |||||
BMC right leg (kg) | SG | 0.474 (0.27) | 0.465 (0.26) | 0.467 (0.28) | Beginning vs. after 12 sessions | 0.378 | 0.25 |
Beginning vs. Decay | 0.347 | 0.28 | |||||
After 12 sessions vs. Decay | 0.738 | 0.07 | |||||
CG | 0.466 (0.24) | 0.468 (0.26) | 0.475 (0.25) | Beginning vs. after 12 sessions | 0.517 | 0.11 | |
Beginning vs. Decay | 0.689 | 0.07 | |||||
After 12 sessions vs. Decay | 0.702 | 0.08 | |||||
Total BMD (g/cm2) | SG | 1.143 (0.28) | 1.150 (0.34) | 1.134 (0.34) | Beginning vs. after 12 sessions | 0.495 | 0.18 |
Beginning vs. Decay | 0.608 | 0.09 | |||||
After 12 sessions vs. Decay | 0.582 | 0.10 | |||||
CG | 1.146 (0.23) | 1.143 (0.22) | 1.144 (0.25) | Beginning vs. after 12 sessions | 0.537 | 0.11 | |
Beginning vs. Decay | 0.639 | 0.08 | |||||
After 12 sessions vs. Decay | 0.651 | 0.08 | |||||
BMD without head(g/cm2) | SG | 0.996 (0.31) | 1.015 (0.33) | 0.997 (0.34) | Beginning vs. after 12 sessions | 0.475 | 0.20 |
Beginning vs. Decay | 0.347 | 0.27 | |||||
After 12 sessions vs. Decay | 0.533 | 0.12 | |||||
CG | 1.001 (0.28) | 1.009 (0.26) | 1.001 (0.31) | Beginning vs. after 12 sessions | 0.773 | 0.06 | |
Beginning vs. Decay | 0.602 | 0.10 | |||||
After 12 sessions vs. Decay | 0.658 | 0.07 | |||||
Left leg BMD (g/cm2) | SG | 1.221 (0.35) | 1.315 (0.45) | 1.273 (0.49) | Beginning vs. after 12 sessions | 0.045 | 0.57 |
Beginning vs. Decay | 0.483 | 0.19 | |||||
After 12 sessions vs. DA | 0.206 | 0.34 | |||||
CG | 1.242 (0.31) | 1.231 (0.32) * | 1.261 (0.30) | Beginning vs. after 12 sessions | 0.523 | 0.14 | |
Beginning vs. Decay | 0.812 | 0.03 | |||||
After 12 sessions vs. Decay | 0.452 | 0.21 | |||||
Right leg BMD (g/cm2) | SG | 1.226 (0.45) | 1.226 (0.50) | 1.224 (0.43) | Beginning vs. after 12 sessions | 0.814 | 0.04 |
Beginning vs. Decay | 0.317 | 0.26 | |||||
After 12 sessions vs. Decay | 0.382 | 0.17 | |||||
CG | 1.234 (0.42) | 1.242 (0.41) | 1.245 (0.41) | Beginning vs. after 12 sessions | 0.615 | 0.09 | |
Beginning vs. Decay | 0.587 | 0.08 | |||||
After 12 sessions vs. Decay | 0.801 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro, V.; Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Raimundo, A.; Muñoz, D.; Maynar-Mariño, M. Effects of Twelve Sessions of High-Temperature Sauna Baths on Body Composition in Healthy Young Men. Int. J. Environ. Res. Public Health 2021, 18, 4458. https://doi.org/10.3390/ijerph18094458
Toro V, Siquier-Coll J, Bartolomé I, Pérez-Quintero M, Raimundo A, Muñoz D, Maynar-Mariño M. Effects of Twelve Sessions of High-Temperature Sauna Baths on Body Composition in Healthy Young Men. International Journal of Environmental Research and Public Health. 2021; 18(9):4458. https://doi.org/10.3390/ijerph18094458
Chicago/Turabian StyleToro, Víctor, Jesús Siquier-Coll, Ignacio Bartolomé, Mario Pérez-Quintero, Armando Raimundo, Diego Muñoz, and Marcos Maynar-Mariño. 2021. "Effects of Twelve Sessions of High-Temperature Sauna Baths on Body Composition in Healthy Young Men" International Journal of Environmental Research and Public Health 18, no. 9: 4458. https://doi.org/10.3390/ijerph18094458
APA StyleToro, V., Siquier-Coll, J., Bartolomé, I., Pérez-Quintero, M., Raimundo, A., Muñoz, D., & Maynar-Mariño, M. (2021). Effects of Twelve Sessions of High-Temperature Sauna Baths on Body Composition in Healthy Young Men. International Journal of Environmental Research and Public Health, 18(9), 4458. https://doi.org/10.3390/ijerph18094458