Assessing 3-D Spatial Extent of Near-Road Air Pollution around a Signalized Intersection Using Drone Monitoring and WRF-CFD Modeling
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Period
2.2. Drone and Stationary Measurements
2.3. WRF-CFD Modeling
3. Results and Discussion
3.1. Diurnal Variations of Near-Road Environments
3.2. Verification of WRF-CFD Model
3.3. Spatial Distribution of Near-Road Environments
3.4. 3-D Spatial Extent of Near-Road Air Pollution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; p. 103. [Google Scholar]
- Patel, M.M.; Chillrud, S.N.; Correa, J.C.; Feinberg, M.; Hazi, Y.; Deepti, K.C.; Prakash, S.; Ross, J.M.; Levy, D.; Kinney, P.L. Spatial and temporal variations in traffic-related particulate matter at New York City high schools. Atmos. Environ. 2009, 43, 4975–4981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Brimblecombe, P. Urban park layout and exposure to traffic-derived air pollutants. Land. Urban Plan. 2020, 194, 103682. [Google Scholar] [CrossRef]
- Schikowski, T.; Sugiri, D.; Ranft, U.; Gehring, U.; Heinrich, J.; Wichmann, H.-E.; Krämer, U. Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respir. Res. 2005, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Amram, O.; Abernethy, R.; Brauer, M.; Davies, H.; Allen, R.W. Proximity of public elementary schools to major roads in Canadian urban areas. Int. J. Health Geo. 2011, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Fan, Z.; Wu, X.; Meng, Q.; Wang, S.; Tang, X.; Ohman-Strickland, P.; Georgopoulos, P.; Zhang, J.; Bonanno, L.; et al. Spatial variation of volatile organic compounds in a “Hot Spot” for air pollution. Atmos. Environ. 2008, 42, 7329–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, A.; Kumar, P. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos. Environ. 2014, 97, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Várhelyi, A. The effects of small roundabouts on emissions and fuel consumption: A case study. Transport. Res. Part D 2002, 7, 65–71. [Google Scholar] [CrossRef]
- Coelho, M.C.; Farias, T.L.; Rouphail, N.M. Impact of speed control traffic signals on pollutant emissions. Transport. Res. Part D 2005, 10, 323–340. [Google Scholar] [CrossRef]
- Pandian, S.; Gokhale, S.; Ghoshal, A.K. Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections. Transport. Res. Part D 2009, 14, 180–196. [Google Scholar] [CrossRef]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Ann. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Woo, S.H.; Kim, K.H.; Lee, S.-B.; Bae, G.-N.; Ma, Y.-I.; Sunwoo, Y.; Baik, J.-J. On-road air quality associated with traffic composition and street-canyon ventilation: Mobile monitoring and CFD modeling. Atmosphere 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Faus-Kessler, T.; Kirchner, M.; Jakobi, G. Modelling the decay of concentrations of nitrogenous compounds with distance from roads. Atmos. Environ. 2008, 42, 4589–4600. [Google Scholar] [CrossRef]
- Naser, T.M.; Kanda, I.; Ohara, T.; Sakamoto, K.; Kobayashi, S.; Nitta, H.; Nataami, T. Analysis of traffic-related NOx and EC concentrations at various distances from major roads in Japan. Atmos. Environ. 2009, 43, 2379–2390. [Google Scholar] [CrossRef]
- Choi, W.; Winer, A.M.; Paulson, S.E. Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions. Atmos. Chem. Phys. 2014, 14, 6925–6940. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Brimblecombe, P. Dispersion of traffic derived air pollutants into urban parks. Sci. Tot. Environ. 2018, 622–623, 576–583. [Google Scholar] [CrossRef]
- Goel, A.; Kumar, P. Vertical and horizontal variability in airborne nanoparticles and their exposure around signalised traffic intersections. Environ. Pollut. 2016, 214, 54–69. [Google Scholar] [CrossRef]
- Sajani, S.Z.; Marchesi, S.; Trentini, A.; Bacco, D.; Zigola, C.; Rovelli, S.; Ricciardelli, I.; Maccone, C.; Lauriola, P.; Cavallo, D.M.; et al. Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building. Environ. Pollut. 2018, 235, 339–349. [Google Scholar] [CrossRef]
- Azimi, P.; Zhao, H.; Fazli, T.; Zhao, D.; Faramarzi, A.; Leung, L.; Stephens, B. Pilot study of the vertical variations in outdoor pollutant concentrations and environmental conditions along the height of a tall building. Build. Environ. 2018, 138, 124–134. [Google Scholar] [CrossRef]
- Villa, T.F.; Jayaratne, E.R.; Gonzalez, L.F.; Morawska, L. Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle. Environ. Pollut. 2017, 230, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zheng, X.; Qian, H. Comparison of particle concentration vertical profiles between downtown and urban forest park in Nanjing (China). Atmos. Pollut. Res. 2018, 9, 829–839. [Google Scholar] [CrossRef]
- Solazzo, E.; Vardoulakis, S.; Cai, X. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling. Atmos. Environ. 2011, 45, 5230–5239. [Google Scholar] [CrossRef]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments—A review. Environ. Pollut. 2016, 208, 271–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Li, X.-B.; Li, C.; Zhu, Y.; Peng, Z.-R.; Wang, Z.; Lu, S.-J. Impacts of wind fields on the distribution patterns of traffic emitted particles in urban residential areas. Transport. Res. Part D 2019, 68, 122–136. [Google Scholar] [CrossRef]
- Aristodemou, E.; Boganegra, L.M.; Mottet, L.; Pavlidis, D.; Constantinou, A.; Pain, C.; Robins, A.; ApSimon, H. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environ. Pollut. 2018, 233, 782–796. [Google Scholar] [CrossRef]
- Yang, B.; Gu, J.; Zhang, T.; Zhang, K. M Near-source air quality impact of a distributed natural gas combined heat and power facility. Environ. Pollut. 2019, 246, 650–657. [Google Scholar] [CrossRef]
- Karkoulias, V.A.; Marazioti, P.E.; Georgiou, D.P.; Maraziotis, E.A. Computational fluid dynamics modeling of the trace elements dispersion and comparison with measurements in a street canyon with balconies in the city of Patras, Greece. Atmos. Environ. 2020, 223, 117210. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Berbekar, E.; Harms, F.; Bartzis, J.G.; Leitl, B. Prediction of high concentrations and concentration distribution of a continuous point source release in a semi-idealized urban canopy using CFD-RANS modeling. Atmos. Environ. 2015, 100, 48–56. [Google Scholar] [CrossRef]
- Baik, J.-J.; Park, S.-B.; Kim, J.-J. Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Clim. 2009, 48, 1667–1681. [Google Scholar] [CrossRef]
- Tewari, M.; Kusaka, H.; Chen, F.; Coirier, W.J.; Kim, S.; Wyszogrodzki, A.A.; Warner, T.T. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Res. 2010, 96, 656–664. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Baik, J.-J.; Ryu, Y.-H.; Lee, S.-H. Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmos. Environ. 2015, 100, 167–177. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Sharma, A.; Matli, C.; Biniwale, R. High resolution urban air quality modeling by coupling CFD and mesoscale models: A review. Asia Pac. J. Atmos. Sci. 2019, 55, 539–556. [Google Scholar] [CrossRef]
- Oh, H.-S.; Lee, S.-H.; Choi, D.-W.; Kwak, K.-H. Comparison of the vertical PM2.5 distributions according to atmospheric stability using a drone during open burning events. J. Korean Soc. Atmos. Environ. 2020, 36, 108–118. [Google Scholar] [CrossRef]
- Brady, J.M.; Stokes, M.D.; Bonnardel, J.; Bertram, T.H. Characterization of a quadrotor unmanned aircraft system for aerosol-particle-concentration measurements. Environ. Sci. Tech. 2016, 50, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weath. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Janjic, Z.A. The step-mountain coordinate: Physics package. Mon. Weath. Rev. 1990, 118, 1429–1443. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J.; Fernando, H.J.S. A CFD model for simulating urban flow and dispersion. J. Appl. Meteorol. 2003, 42, 1636–1648. [Google Scholar] [CrossRef]
- Rivas, E.; Santiago, J.L.; Lechón, Y.; Martín, F.; Ariño, A.; Pons, J.J.; Santamaría, J.M. CFD modelling of air quality in Pamplona City (Spain): Assessment, stations spatial representativeness and health impacts valuation. Sci. Tot. Environ. 2019, 649, 1362–1380. [Google Scholar] [CrossRef]
- Fu, X.; Xiang, S.; Liu, Y.; Liu, J.; Yu, J.; Mauzerall, D.L.; Tao, S. High-resolution simulation of local traffic-related NOx dispersion and distribution in a complex urban terrain. Environ. Pollut. 2020, 263, 114390. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, K.O.; Baek, S.-J.; Kim, D.H. Analysis of meteorological features and prediction probability associated with the fog occurrence at Chuncheon. J. Korean Soc. Atmos. Environ. 2005, 21, 303–313. [Google Scholar]
- Shim, H.-N.; Lee, Y.-H. Influence of local wind on occurrence of fog at inland areas. Atmosphere 2017, 27, 213–224. [Google Scholar]
- Kwak, K.-H.; Lee, S.-H.; Seo, J.M.; Park, S.-B.; Baik, J.-J. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects. Environ. Pollut. 2016, 208, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Kittelson, D.B. Engines and nanoparticles: A review. J. Aeros. Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimbrough, S.; Owen, R.C.; Snyder, M.; Richmond-Bryant, J. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements. Atmos. Environ. 2017, 165, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, C.; Zheng, M. Source apportionment of black carbon during winter in Beijing. Sci. Tot. Environ. 2018, 618, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, X.; Shi, X.; Han, X.; Luo, L.; Wang, L. Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe river basin, China. Front. Earth Sci. 2012, 6, 314–323. [Google Scholar] [CrossRef]
- Banks, R.F.; Baldasano, J.M. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci. Tot. Environ. 2016, 572, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Boadh, R.; Satyanarayana, A.N.V.; Krishna, T.V.B.P.S.R.; Madala, S. Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station. Atmosphere 2016, 29, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Feudo, T.L.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58–71. [Google Scholar] [CrossRef]
- He, L.; Hang, J.; Wang, X.; Lin, B.; Li, X.; Lan, G. Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Sci. Tot. Environ. 2017, 584, 189–206. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, G.; Wang, X.; Liu, S.; Mak, C.M.; Fan, Y.; Hang, J. Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Sci. Tot. Environ. 2019, 653, 968–994. [Google Scholar] [CrossRef] [PubMed]
- Thaker, P.; Gokhale, S. The impact of traffic-flow patterns on air quality in urban street canyons. Environ. Pollut. 2016, 208, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Luo, Z.; Wang, X.; He, L.; Wang, B.; Zhu, W. The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons. Environ. Pollut. 2017, 220, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Kuuluvainen, H.; Poikkimäki, M.; Järvinen, A.; Kuula, J.; Irjala, M.; Maso, M.D.; Keskinen, J.; Timonen, H.; Niemi, J.V.; Rönkkö, T. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environ. Pollut. 2018, 241, 96–105. [Google Scholar] [CrossRef]
- Taheri, A.; Aliasghari, P.; Hosseini, V. Black carbon and PM2.5 monitoring campaign on the roadside and residential urban background sites in the city of Tehran. Atmos. Environ. 2019, 218, 116928. [Google Scholar] [CrossRef]
- Liu, X.; Schnelle-Kreis, J.; Zhang, X.; Bendl, J.; Khedr, M.; Jakobi, G.; Schloter-Hai, B.; Hovorka, J.; Zimmermann, R. Integration of air pollution data collected by mobile measurement to derive a preliminary spatiotemporal air pollution profile from two neighboring German-Czech border villages. Sci. Tot. Environ. 2020, 722, 137632. [Google Scholar] [CrossRef] [PubMed]
- Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H.A.C.; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; et al. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements. Atmos. Chem. Phys. 2015, 15, 9799–9818. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Shan, R.; Zhang, Y.; Li, X.-X.; Yin, T.; Hang, J.; Norford, L. Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas. Sci. Tot. Environ. 2019, 647, 255–267. [Google Scholar] [CrossRef]
Variable | Model and Manufacturer | Measurement Resolution | Accuracy | Time Interval | |
---|---|---|---|---|---|
Drone | PM2.5 | Sidepak AM520, TSI (MN, USA) | 1 μg m−3 | - | 1 s |
Black carbon (BC) | MA200, Aethlab (CA, USA) | 0.001 μg m−3 | - | 5 s | |
O3 | Aeroqual 500, Aeroqual (Auckland, NZ) | 0.001 ppm | ±0.008 ppm | 1 min | |
Air temperature Relative humidity (RH) | Imet-XQ2, InterMet (MI, USA) | 0.01 ℃, 0.1% | ±0.3 ℃, ±5% | 1 s | |
Stationary | PM10, PM2.5, PM1 | Model 1.109A, Grimm (NC, USA) | 0.1 μg m−3 | ±5% | 6 s |
Particle number | Nanoscan SMPS3910, TSI (MN, USA) | 100 particles cm−3 | - | 1 min | |
BC | MA200, Aethlab | 0.001 μg m−3 | - | 1 min | |
NOx, NO2, NO | nCLD AL, Eco Physics (Duernten, Switzerland) | 0.001 ppm | - | 1 s | |
CO2 | CO2 analyzer, KINSCO technology (Seoul, ROK) | 1 ppm | - | 1 min | |
O3 | O3 analyzer, KINSCO technology (Seoul, ROK) | 0.001 ppm | - | 1 min |
Vehicle Type | Fuel | Emission Factor (g km−1) |
---|---|---|
Regular car | Gasoline | |
SUV, Light truck | Diesel | |
Taxi | LPG | |
City bus | CNG | |
Express bus | Diesel | |
Heavy duty vehicle | Diesel |
Temp. (℃) | Wind Speed (m s−1) | Wind Direction (°) | Daily Precipitation (mm) | Cloud Cover (1/10) | PM2.5 (μg m−3) | NO2 (ppb) | O3 (ppb) | ||
---|---|---|---|---|---|---|---|---|---|
P1D | Mar-12 | 5.3 | 1.3 | 228 | 2.4 (10 a.m.–4 p.m.) | 9 | 45 | 21 | 37 |
Mar-14 | −1.7 | 0.6 | 217 | - | 0 | 23 | 32 | 7 | |
Mar-15 | 1.9 | 0.5 | 97 | 4.0 (3–11 p.m.) | 10 | 30 | 14 | 22 | |
P2D | Apr-01 | 1.5 | 0.5 | 164 | - | 0 | 23 | 30 | 10 |
Apr-02 | 1.6 | 0.7 | 207 | - | 0 | 22 | 8 | 28 | |
Apr-03 | 2.8 | 0.4 | 189 | - | 0 | 23 | 12 | 28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Kwak, K.-H. Assessing 3-D Spatial Extent of Near-Road Air Pollution around a Signalized Intersection Using Drone Monitoring and WRF-CFD Modeling. Int. J. Environ. Res. Public Health 2020, 17, 6915. https://doi.org/10.3390/ijerph17186915
Lee S-H, Kwak K-H. Assessing 3-D Spatial Extent of Near-Road Air Pollution around a Signalized Intersection Using Drone Monitoring and WRF-CFD Modeling. International Journal of Environmental Research and Public Health. 2020; 17(18):6915. https://doi.org/10.3390/ijerph17186915
Chicago/Turabian StyleLee, Seung-Hyeop, and Kyung-Hwan Kwak. 2020. "Assessing 3-D Spatial Extent of Near-Road Air Pollution around a Signalized Intersection Using Drone Monitoring and WRF-CFD Modeling" International Journal of Environmental Research and Public Health 17, no. 18: 6915. https://doi.org/10.3390/ijerph17186915
APA StyleLee, S. -H., & Kwak, K. -H. (2020). Assessing 3-D Spatial Extent of Near-Road Air Pollution around a Signalized Intersection Using Drone Monitoring and WRF-CFD Modeling. International Journal of Environmental Research and Public Health, 17(18), 6915. https://doi.org/10.3390/ijerph17186915