Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Global Spatial Correlation
2.3. Local Spatial Correlation
2.4. Spatial Econometric Panel Data Model
2.5. Data Sources and Processing
3. Results
3.1. Spatial Correlation Analysis of Haze Pollution
3.2. Regression Results and Analysis of Spatial Effects
4. Discussion
4.1. Influence of Industrial Energy Consumption Structure on Haze Pollution
4.2. Influence of Economic Development on Haze Pollution
4.3. Influence of Transportation on Haze Pollution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Chen, Y. Analysis of China’s industrial layout adjustment and industry transfer. Contemp. Econ. Manag. 2011, 33, 38–47. [Google Scholar]
- Liu, S.; Li, L.; Bonenberg, W.; Bardzinska-Bonenberg, T.; Zhou, M. Management Balance Between Nature and Rural Settlements in China. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; pp. 279–285. [Google Scholar]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin, Germany, 1988. [Google Scholar]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Poon, J.P.; Casas, I.; He, C. The impact of energy, transport, and trade on air pollution in China. Eurasian Geogr. Econ. 2006, 47, 568–584. [Google Scholar] [CrossRef]
- Reddy, B.S.; Ray, B.K. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector. Energy Policy 2011, 39, 7234–7243. [Google Scholar] [CrossRef] [Green Version]
- Jaber, J.O.; Al-Ghandoor, A.M.; Al-Hinti, I.; Sawallha, S.A. Prediction of energy consumption of passenger transportation and GHG emissions in Jordan. Int. J. Glob. Warm. 2012, 4, 90–112. [Google Scholar] [CrossRef]
- Cheng, N.; Li, Y.; Meng, F. Analytical Studies of PM2.5 Pollution and Source identification in China in 2013. J. Anhui Agri. Sci. 2014, 42, 4721–4724. [Google Scholar]
- Yang, Y.; Lan, H.; Li, J. Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone. Int. J. Environ. Res. Public Health 2020, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Xue, A.; Geng, E. Region division study of PM2.5 pollution in cities of China based on complex networks. J. Basic Sci. Eng. 2015, 23, 68–78. [Google Scholar]
- Lin, B.; Du, Z. How China’s urbanization impacts transport energy consumption in the face of income disparity. Renew. Sustain. Energy Rev. 2015, 52, 1693–1701. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhang, W.; Li, J.; Zou, Y. Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Appl. Energy 2016, 184, 714–726. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W. The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis. Energy Policy 2016, 95, 126–134. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Pan, Y. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 233, 759–771. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatiotemporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 2001, 83, 705–710. [Google Scholar] [CrossRef]
- Gray, W.B.; Shadbegian, R.J. The environmental performance of polluting plants: A spatial analysis. J. Reg. Sci. 2007, 47, 63–84. [Google Scholar] [CrossRef]
- Bateman, I.J.; Jones, A.P.; Lovett, A.A.; Lake, I.; Day, B. Applying geographical information systems (GIS) to environmental and resource economics. Environ. Resour. Econ. 2002, 22, 219–269. [Google Scholar] [CrossRef]
- Rupasingha, A.; Goetz, S.J.; Debertin, D.L.; Pagoulatos, A. The environmental Kuznets curve for US counties: A spatial econometric analysis with extensions. Pap. Reg. Sci. 2004, 83, 407–424. [Google Scholar] [CrossRef]
- Maddison, D. Environmental Kuznets curves: A spatial econometric approach. J. Environ. Econ. Manag. 2006, 51, 218–230. [Google Scholar]
- Chen, X.; Shao, S.; Tian, Z.; Xie, Z.; Yin, P. Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Hosseini, H.M.; Kaneko, S. Can environmental quality spread through institutions? Energy Policy 2013, 56, 312–321. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Chen, S.; Wang, W.; Nie, R. The environmental Kuznets curve for PM2.5 pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data approach. J. Clean. Prod. 2019, 220, 984–994. [Google Scholar] [CrossRef]
- Ma, L.-M.; Zhang, X. The spatial effect of China’s haze pollution and the impact from economic change and energy structure. China Ind. Econ. 2014, 4, 19–31. [Google Scholar]
- Richardson, H.W. Economies and diseconomies of agglomeration. In Urban Agglomeration and Economic Growth; Springer: Berlin, Germany, 1995; pp. 123–155. [Google Scholar]
- Helpman, E. The size of regions. Top. Public Econ. Theor. Appl. Anal. 1998, 33–54. [Google Scholar]
- Adgate, J.; Ramachandran, G.; Pratt, G.; Waller, L.; Sexton, K. Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure. Atmos. Environ. 2002, 36, 3255–3265. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Dominici, F.; Ebisu, K.; Zeger, S.L.; Samet, J.M. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 2007, 115, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Hayashi, Y. Assessment of private car stock and its environmental impacts in China from 2000 to 2020. Transp. Res. Part. D Transp. Environ. 2008, 13, 471–478. [Google Scholar] [CrossRef]
- Wu, X.; Wu, Y.; Zhang, S.; Liu, H.; Fu, L.; Hao, J. Assessment of vehicle emission programs in China during 1998–2013: Achievement, challenges and implications. Environ. Pollut. 2016, 214, 556–567. [Google Scholar] [CrossRef]
- Zheng, S.; Huo, Y. Low carbon urban spatial structure: An analysis of private car traveling. World Econ. Pap. 2010, 6, 50–65. [Google Scholar]
- Barth, M.; Boriboonsomsin, K. Traffic congestion and greenhouse gases. Access Mag. 2009, 1, 2–9. [Google Scholar]
- Barth, M.; Boriboonsomsin, K. Real-world carbon dioxide impacts of traffic congestion. Transp. Res. Rec. 2008, 2058, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, I.; Dunn, R.; Raine, R. Estimating the effects of traffic congestion on fuel consumption and vehicle emissions based on acceleration noise. J. Transp. Eng. 2007, 133, 96–104. [Google Scholar] [CrossRef]
- Jerrett, M.; Gale, S.; Kontgis, C. Spatial modeling in environmental and public health research. Int. J. Environ. Res. Public Health 2010, 7, 1302–1329. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. Lattice tuning. Geogr. Anal. 1979, 11, 36–44. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Atmospheric Composition Analysis Group. China Regional Estimates, 2000–2017. Available online: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 (accessed on 18 February 2020).
- Bureau, B.S. Beijing Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2018. [Google Scholar]
- Bureau, T.S. Tianjin Statistical Yearbook; Tianjin Statistics Press: Tianjin, China, 2018. [Google Scholar]
- Bureau, H.S. Hebei Economic Yearbook; China Statistics Press: Beijing, China, 2018.
- Bureau, S.P.S. Shanxi Statistical Yearbook; Shanxi Statistics Press: Beijing, China, 2018. [Google Scholar]
- Bureau, S.S. Shandong statistical yearbook; China Statistics Press: Beijing, China, 2018.
- Bureau, C.S. China Industrial Economy Statistical Yearbook; China Statistic Press: Beijing, China, 2018.
- Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 18 February 2020).
- Bureau, C.S. Statistical Communique on National Economic and Social Development of China; China Statistics Press: Beijing, China, 2018.
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial. Spat. Anal. 1996, 4, 111. [Google Scholar]
Year | Morans’ I | E(I) | sd(I) | Z | p-Value |
---|---|---|---|---|---|
2000 | 0.480 | −0.037 | 0.143 | 3.613 | 0.001 |
2001 | 0.342 | −0.037 | 0.135 | 2.802 | 0.002 |
2002 | 0.402 | −0.037 | 0.142 | 3.074 | 0.001 |
2003 | 0.389 | −0.037 | 0.132 | 3.240 | 0.001 |
2004 | 0.411 | −0.037 | 0.134 | 3.316 | 0.001 |
2005 | 0.488 | −0.037 | 0.141 | 3.724 | 0.001 |
2006 | 0.367 | −0.037 | 0.135 | 3.033 | 0.001 |
2007 | 0.514 | −0.037 | 0.140 | 3.932 | 0.001 |
2008 | 0.457 | −0.037 | 0.136 | 3.612 | 0.001 |
2009 | 0.392 | −0.037 | 0.135 | 3.163 | 0.001 |
2010 | 0.514 | −0.037 | 0.137 | 3.953 | 0.001 |
2011 | 0.415 | −0.037 | 0.138 | 3.281 | 0.001 |
2012 | 0.492 | −0.037 | 0.139 | 3.817 | 0.001 |
2013 | 0.420 | −0.037 | 0.138 | 3.266 | 0.001 |
2014 | 0.449 | −0.037 | 0.137 | 3.544 | 0.001 |
2015 | 0.473 | −0.037 | 0.137 | 3.705 | 0.001 |
2016 | 0.4355 | −0.037 | 0.1353 | 3.4806 | 0.001 |
2017 | 0.4267 | −0.037 | 0.137 | 3.4305 | 0.001 |
Variable | SAR | SEM | ||||
---|---|---|---|---|---|---|
Model(1) | Model(2) | Model(3) | Model(4) | Model(5) | Model(6) | |
Spatial Fixed Effects | Time Period Fixed Effects | Spatial and Time Period Fixed Effects | Spatial Fixed Effects | Time Period Fixed Effects | Spatial and Time Period Fixed Effects | |
ES | 0.039 * (2.371) | 0.093 *** (4.338) | 0.091 *** (4.269) | 0.130 *** (4.870) | 0.131 *** (5.045) | 0.134 *** (5.261) |
lnGDP | 0.026 *** (4.294) | 0.046 *** (5.995) | 0.043 *** (5.611) | 0.054 *** (6.043) | 0.057 *** (6.439) | 0.055 *** (6.263) |
TJ | 1.083 * (2.480) | 1.992 *** (3.658) | 1.951 *** (3.619) | 2.717 *** (4.036) | 2.637 *** (4.041) | 2.700 *** (4.196) |
ρ | 0.806 *** (37.621) | 0.548 *** (13.226) | 0.594 *** (15.516) | |||
λ | 0.806 *** (36.299) | 0.573 *** (13.900) | 0.651 *** (18.460) | |||
σ2 | 0.019 | 0.019 | 0.018 | 0.018 | 0.018 | 0.017 |
R2 | 0.709 | 0.711 | 0.731 | 0.013 | 0.608 | 0.627 |
LM(lag) | 302.732 *** | 44.031 *** | 37.833 *** | 475.031 *** | 93.809 *** | 92.769 *** |
R-LM(lag) | 3493.336 *** | 34.415 *** | 36.036 ** | 76.712 *** | 0.545 | 0.920 |
LM(error) | 23.404 *** | 22.422 *** | 17.515 *** | 628.315 *** | 121.273 *** | 122.694 *** |
R-LM(error) | 3214.008 *** | 12.807 *** | 15.718 *** | 229.995 *** | 28.010 *** | 30.845 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Mao, C. Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region. Int. J. Environ. Res. Public Health 2020, 17, 5610. https://doi.org/10.3390/ijerph17155610
Li M, Mao C. Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region. International Journal of Environmental Research and Public Health. 2020; 17(15):5610. https://doi.org/10.3390/ijerph17155610
Chicago/Turabian StyleLi, Meicun, and Chunmei Mao. 2020. "Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region" International Journal of Environmental Research and Public Health 17, no. 15: 5610. https://doi.org/10.3390/ijerph17155610
APA StyleLi, M., & Mao, C. (2020). Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region. International Journal of Environmental Research and Public Health, 17(15), 5610. https://doi.org/10.3390/ijerph17155610