Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19
Abstract
:1. Introduction
2. Methods
2.1. Overview
2.2. Sentiment Analysis
2.3. Content Analysis
3. Results
3.1. Quantitative Sentiment Analysis of Tweets Using Race-Related Keywords
3.2. COVID-19 and Race-Related Tweets
3.3. Qualitative Content Analysis: Themes
3.4. Racism & Blame
3.5. Anti-Racism
3.6. Misinformation
3.7. News
3.8. Politics
3.9. Call to Action
3.10. Daily Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tavernise, S.; Oppel, R.A. Spit On, Yelled At, Attacked: Chinese-Americans Fear for Their Safety. Available online: https://www.nytimes.com/2020/03/23/us/chinese-coronavirus-racist-attacks.html (accessed on 15 June 2020).
- Serhan, Y.; McLaughlin, T. The Other Problematic Outbreak: As the Coronavirus Spreads across the Globe, So too Does Racism. Available online: https://www.theatlantic.com/international/archive/2020/03/coronavirus-covid19-xenophobia-racism/607816/ (accessed on 15 June 2020).
- Gee, G.; Ro, M.; Rimoine, A. Seven reasons to care about racism and covid19 and seven things to do about it. Am. J. Public Health 2020. [Google Scholar] [CrossRef]
- Borja, M.; Jeung, R.; Yellow Horse, A.; Gibson, J.; Gowing, S.; Navins, A.; Power, E. Anti-Chinese Rhetoric Tied to Racism against Asian Americans Stop AAPI Hate Report. Available online: https://caasf.org/2020/06/anti-chinese-rhetoric-tied-to-racism-against-asian-americans-stop-aapi-hate-report/ (accessed on 7 July 2020).
- Schild, L.; Ling, C.; Blackburn, J.; Stringhini, G.; Zhang, Y.; Zannettou, S. “Go Eat a Bat, Chang!”: An Early Look on the Emergence of Sinophobic Behavior on Web Communities in the Face of COVID-19. Available online: https://arxiv.org/abs/2004.04046 (accessed on 9 June 2020).
- Paradies, Y.; Ben, J.; Denson, N.; Elias, A.; Priest, N.; Pieterse, A.; Gupta, A.; Kelaher, M.; Gee, G. Racism as a Determinant of Health: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, J.C.; Link, B.G. Is Racism a Fundamental Cause of Inequalities in Health? Annu. Rev. Sociol. 2015, 41, 311–330. [Google Scholar] [CrossRef]
- Pascoe, E.A.; Smart Richman, L. Perceived discrimination and health: A meta-analytic review. Psychol. Bull. 2009, 135, 531–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, N.L.; Geronimus, A.T.; Martinez-Cardoso, A.M. Change in birth outcomes among infants born to Latina mothers after a major immigration raid. Int. J. Epidemiol. 2017, 46, 839–849. [Google Scholar]
- Lauderdale, D.S. Birth outcomes for Arabic-named women in California before and after 11 September. Demography 2006, 43, 185–201. [Google Scholar] [CrossRef]
- Nguyen, T.; Adams, N.; Huang, D.; Glymour, M.M.; Allen, A.M.; Nguyen, Q.C. The Association Between State-Level Racial Attitudes Assessed From Twitter Data and Adverse Birth Outcomes: Observational Study. JMIR Public Health Surveill 2020, 6, e17103. [Google Scholar] [CrossRef]
- Huang, D.; Huang, Y.; Adams, N.; Nguyen, T.T.; Nguyen, Q.C. Twitter-Characterized Sentiment Towards Racial/Ethnic Minorities and Cardiovascular Disease (CVD) Outcomes. J. Racial Ethn. Health Disparities 2020. [Google Scholar] [CrossRef]
- Chae, D.H.; Clouston, S.; Hatzenbuehler, M.L.; Kramer, M.R.; Cooper, H.L.; Wilson, S.M.; Stephens-Davidowitz, S.I.; Gold, R.S.; Link, B.G. Association between an Internet-Based Measure of Area Racism and Black Mortality. PLoS ONE 2015, 10, e0122963. [Google Scholar] [CrossRef]
- Williams, D.R.; Lawrence, J.A.; Davis, B.A. Racism and Health: Evidence and Needed Research. Annu. Rev. Public Health 2019, 40, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.T.; Cogburn, C.D.; Williams, D.R. Self-reported experiences of discrimination and health: Scientific advances, ongoing controversies, and emerging issues. Annu. Rev. Clin. Psychol. 2015, 11, 407–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.R.; Yan, Y.; Jackson, J.S.; Anderson, N.B. Racial Differences in Physical and Mental Health: Socio-economic Status, Stress and Discrimination. J. Health Psychol. 1997, 2, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Hermosura, A.H.O.; Haynes, S.N.; Kaholokula, J.K.A. A Preliminary Study of the Relationship between Perceived Racism and Cardiovascular Reactivity and Recovery in Native Hawaiians. J. Racial Ethn. Health Disparities 2018, 5, 1142–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitner, J.B.; Hehman, E.; Ayduk, O.; Mendoza-Denton, R. Blacks’ Death Rate Due to Circulatory Diseases Is Positively Related to Whites’ Explicit Racial Bias. Psychol. Sci. 2016, 27, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Mislove, A.; Lehmann, S.; Ahn, Y.; Onnela, J.P.; Rosenquist, J.N. Understanding the Demographics of Twitter Users. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011; pp. 554–557. [Google Scholar]
- Suler, J. The Online Disinhibition Effect. CyberPsychol. Behav. 2004, 7, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Criss, S.; Allen, A.M.; Glymour, M.M.; Phan, L.; Trevino, R.; Dasari, S.; Nguyen, Q.C. Pride, Love, and Twitter Rants: Combining Machine Learning and Qualitative Techniques to Understand What Our Tweets Reveal about Race in the US. Int. J. Environ. Res. Public Health 2019, 16, 1766. [Google Scholar] [CrossRef] [Green Version]
- Pew Research Center. Social Media Conversations about Race. Available online: http://www.pewinternet.org/2016/08/15/social-media-conversations-about-race/ (accessed on 17 March 2020).
- Bartlett, J.; Reffin, J.; Rumball, N.; Williamson, S. Anti-Social Media. Available online: https://www.demos.co.uk/files/DEMOS_Anti-social_Media.pdf (accessed on 20 September 2020).
- The Racial Slur Database. Available online: http://www.rsdb.org/ (accessed on 7 August 2018).
- WHO. Naming the Coronavirus Disease (COVID-19) and the Virus that Causes It. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 20 September 2020).
- Joachims, T. Text categorization with Support Vector Machines: Learning with many relevant features. In Proceedings of Machine Learning: ECML-98; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142. [Google Scholar]
- VanderWeele, T.; Vansteelandt, S. Conceptual issues concerning mediation, interventions, and composition. Stat. Interface 2009, 2, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Kaggle UMICH SI650—Sentiment Classification. Available online: https://www.kaggle.com/c/si650winter11 (accessed on 30 November 2018).
- Sanders Analytics. Twitter Sentiment Corpus. Available online: http://www.sananalytics.com/lab/twitter-sentiment/ (accessed on 11 November 2018).
- The R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 13 March 2020).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977. [Google Scholar] [CrossRef] [Green Version]
- Flores, N.M.; Huo, Y.J. “We” Are Not All Alike: Consequences of Neglecting National Origin Identities Among Asians and Latinos. Soc. Psychol. Personal. Sci. 2012, 4, 143–150. [Google Scholar] [CrossRef]
- WHO. Social Stigma Associated with COVID-19. Available online: https://www.who.int/docs/default-source/epi-win/stigma/covid19-stigma-guide.pdf?sfvrsn=48f6ac1_2&download=true (accessed on 9 June 2020).
- Rizzuto, M.U.S. Politicians Exploit Coronavirus Fears with Anti-Chinese Dog Whistles. Available online: https://medium.com/dfrlab/u-spoliticians-exploit-coronavirus-fears-with-anti-chinese-dogwhistles-ff61c9d7e458 (accessed on 20 September 2020).
- Darling-Hammond, S.; Michaels, E.K.; Allen, A.; Chae, D.; Thomas, M.D.; Nguyen, T.; Mujahid, M.; Johnson, R. After “The China Virus” Went Viral: Racially Charged Coronavirus Coverage and Trends in Bias Against Asian Americans. Health Educ. Behav. 2020. [Google Scholar] [CrossRef]
- Twitter. Violent Threats Policy. Available online: https://help.twitter.com/en/rules-and-policies/violent-threats-glorification (accessed on 9 June 2020).
- Wojcik, S.; Hughes, A. Sizing Up Twitter Users. Available online: https://www.pewinternet.org/2019/04/24/sizing-up-twitter-users/ (accessed on 15 October 2019).
- Dickerson, S.S.; Kemeny, M.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull. 2004, 130, 355–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S. Protective and damaging effects of stress mediators: Central role of the brain. Dialogues Clin. Neurosci. 2006, 8, 367–381. [Google Scholar] [PubMed]
- Martz, C.D.; Allen, A.M.; Fuller-Rowell, T.E.; Spears, E.C.; Lim, S.S.; Drenkard, C.; Chung, K.; Hunter, E.A.; Chae, D.H. Vicarious Racism Stress and Disease Activity: The Black Women’s Experiences Living with Lupus (BeWELL) Study. J. Racial Ethn. Health Disparities 2019, 6, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Chae, D.H.; Powell, W.A.; Nuru-Jeter, A.M.; Smith-Bynum, M.A.; Seaton, E.K.; Forman, T.A.; Turpin, R.; Sellers, R. The Role of Racial Identity and Implicit Racial Bias in Self-Reported Racial Discrimination: Implications for Depression Among African American Men. J. Black Psychol. 2017, 43, 789–812. [Google Scholar] [CrossRef] [Green Version]
- Pew Research Center. Race in America 2019. Available online: https://www.pewsocialtrends.org/2019/04/09/race-in-america-2019/ (accessed on 7 June 2020).
November | December | January | February | March | April | May | June | |
---|---|---|---|---|---|---|---|---|
Racial/ethnic group | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) |
Asian | 9.45 (31,774) | 9.34 (30,476) | 9.96 (27,588) | 9.81 (32,925) | 15.21 (65,915) | 13.11 (46,585) | 12.02 (40,356) | 13.41 (30,150) |
Black | 48.34 (298,548) | 48.22 (321,531) | 48.37 (253,019) | 45.15 (280,354) | 47.63 (286,452) | 48.18 (275,009) | 46.77 (342,085) | 38.15 (504,600) |
Latinx | 12.81 (27,466) | 13.14 (26,831) | 13.15 (21,401) | 12.51 (33,258) | 12.02 (28,310) | 13.11 (24,385) | 15.58 (27,981) | 21.63 (31,357) |
White | 44.96 (27,496) | 46.14 (30,019) | 46.92 (23,511) | 45.80 (27,749) | 46.36 (27,240) | 46.01 (25,960) | 52.57 (51,425) | 50.57 (72,161) |
November | December | January | February | March | April | May | June | |
---|---|---|---|---|---|---|---|---|
Racial/ethnic group | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) |
Asian | 15.10 (31,774) | 15.95 (30,476) | 16.90 (27,588) | 15.20 (32,925) | 8.63 (65,915) | 11.30 (46,585) | 13.01 (40,356) | 12.07 (30,150) |
Black | 4.37 (298,548) | 4.47 (321,531) | 4.48 (253,019) | 5.90 (280,354) | 4.28 (286,452) | 4.14 (275,009) | 4.43 (342,085) | 6.56 (504,600) |
Latinx | 16.62 (27,466) | 16.80 (26,831) | 16.84 (21,401) | 19.22 (33,258) | 15.11 (28,310) | 15.88 (24,385) | 15.47 (27,981) | 12.16 (31,357) |
White | 3.66 (27,496) | 3.63 (30,019) | 3.69 (23,511) | 3.64 (27,749) | 3.59 (27,240) | 3.57 (25,960) | 52.57 (51,425) | 50.57 (72,161) |
Term | n | Percent |
---|---|---|
virus | 13,167 | 21.55 |
covid | 12,347 | 20.21 |
chinese virus | 8181 | 13.39 |
quarantine | 6771 | 11.08 |
rona | 6579 | 10.77 |
pandemic | 4285 | 7.01 |
wuhan | 2494 | 4.08 |
xenophobia | 1548 | 2.53 |
plague | 936 | 1.53 |
social distancing | 809 | 1.32 |
epidemic | 680 | 1.11 |
stay at home | 387 | 0.63 |
ncov | 344 | 0.56 |
stayhome | 338 | 0.55 |
coro | 268 | 0.44 |
curfew | 265 | 0.43 |
socialdistancing | 179 | 0.29 |
kung flu | 171 | 0.28 |
wash your hands | 168 | 0.28 |
6 feet | 147 | 0.24 |
Themes | Example Tweets |
---|---|
Racism |
|
| |
| |
Blame |
|
| |
| |
Anti-racism |
|
| |
Misinformation |
|
| |
News |
|
| |
Politics |
|
Call to action |
|
| |
Daily Life Impacted by COVID-19 |
|
| |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Criss, S.; Dwivedi, P.; Huang, D.; Keralis, J.; Hsu, E.; Phan, L.; Nguyen, L.H.; Yardi, I.; Glymour, M.M.; et al. Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7032. https://doi.org/10.3390/ijerph17197032
Nguyen TT, Criss S, Dwivedi P, Huang D, Keralis J, Hsu E, Phan L, Nguyen LH, Yardi I, Glymour MM, et al. Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19. International Journal of Environmental Research and Public Health. 2020; 17(19):7032. https://doi.org/10.3390/ijerph17197032
Chicago/Turabian StyleNguyen, Thu T., Shaniece Criss, Pallavi Dwivedi, Dina Huang, Jessica Keralis, Erica Hsu, Lynn Phan, Leah H. Nguyen, Isha Yardi, M. Maria Glymour, and et al. 2020. "Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19" International Journal of Environmental Research and Public Health 17, no. 19: 7032. https://doi.org/10.3390/ijerph17197032
APA StyleNguyen, T. T., Criss, S., Dwivedi, P., Huang, D., Keralis, J., Hsu, E., Phan, L., Nguyen, L. H., Yardi, I., Glymour, M. M., Allen, A. M., Chae, D. H., Gee, G. C., & Nguyen, Q. C. (2020). Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19. International Journal of Environmental Research and Public Health, 17(19), 7032. https://doi.org/10.3390/ijerph17197032