Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation of Bacterial Cell and Inoculation Mixture
2.2. High-Pressure Processing and Antimicrobial Treatments
2.3. Microbiological Enumeration, pH Measurement, and Control of Exposure Time
2.4. Experimental Design and Statistical Analyses
3. Results
3.1. Inactivation of S. aureus at 450 MPa of Elevated Hydrostatic Pressure as Affected by Mild Heat
3.2. Inactivation of S. aureus at 550 MPa of Elevated Hydrostatic Pressure as Affected by Nisin
3.3. Inactivation of S. aureus at 350 MPa of Elevated Hydrostatic Pressure as Affected by Caprylic Acid and Carvacrol
3.4. Summary of Inactivation Efficacy of Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Burden of Food Safety. 2015. Available online: http://www.who.int/foodsafety/areas_work/foodborne-diseases/ferg/en/ (accessed on 21 July 2020).
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Food borne illness acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Fouladkhah, A.C.; Thompson, B.; Camp, J.S. The Threat of Antibiotic Resistance in Changing Climate. Microorganisms 2020, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Fouladkhah, A.C.; Thompson, B.; Camp, J.S. Safety of Food and Water Supplies in the Landscape of Changing Climate. Microorganisms 2019, 7, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Food Safety—Climate Change and the Role of WHO. 2019. Available online: https://www.who.int/foodsafety/publications/all/Climate_Change_Document.pdf?ua=1 (accessed on 11 April 2020).
- Fouladkhah, A. Changing Climate: A ‘Threat Multiplier’ for Foodborne and Waterborne Infectious Diseases and Antibiotic Resistance. Research Outreach, (114). 2020. Available online: https://researchoutreach.org/articles/changing-climate-threat-multiplier-foodborne-waterborne-infectious-diseases-antibiotic-resistance/ (accessed on 21 July 2020).
- Soares, J.C.; Marques, M.R.; Tavaria, F.K.; Pereira, J.O.; Malcata, F.X.; Pintado, M.M. Biodiversity and characterization of Staphylococcus species isolated from a small manufacturing dairy plant in Portugal. Int. J. Food Microbiol. 2011, 146, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.S.; Sanjeev, S. Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control. 2007, 18, 1565–1568. [Google Scholar] [CrossRef]
- Caggiano, G.; Dambrosio, A.; Ioanna, F.; Balbino, S.; Barbuti, G.; De Giglio, O.; Diella, G.; Lovero, G.; Rutigliano, S.; Scarafile, G.; et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates in food industry workers. Ann. Ig. 2016, 28, 8–14. [Google Scholar]
- Castro, A.; Santos, C.; Meireles, H.; Silva, J.; Teixeira, P. Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J. Infect. Public Health 2016, 9, 153–160. [Google Scholar] [CrossRef] [Green Version]
- National Outbreak Reporting System (NORS). Centers for Disease Control and Prevention. 2020. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 22 July 2020).
- Allison, A.; Daniels, E.; Chowdhury, S.; Fouladkhah, A. Effects of elevated hydrostatic pressure against mesophilic background microflora and habituated Salmonella serovars in orange juice. Microorganisms 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.N.; Aras, S.; Allison, A.; Adhikari, J.; Chowdhury, S.; Fouladkhah, A. Interactions of carvacrol, caprylic acid, habituation, and mild heat for pressure-based inactivation of O157 and non-O157 serogroups of Shiga toxin-producing Escherichia coli in acidic environment. Microorganisms 2019, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Aras, S.; Kabir, M.N.; Chowdhury, S.; Fouladkhah, A.C. Augmenting the pressure-based pasteurization of Listeria monocytogenes by synergism with nisin and mild heat. Int. J. Environ. Res. Public Health 2020, 17, 563. [Google Scholar] [CrossRef] [Green Version]
- National Advisory Committee on Microbiological Criteria for Foods (NACMCF). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J. Food Prot. 2006, 69, 1190–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, A.; Chowdhury, S.; Fouladkhah, A. Synergism of mild heat and high-pressure pasteurization against Listeria monocytogenes and natural microflora in phosphate-buffered saline and raw milk. Microorganisms 2018, 6, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Direct Food Substance Affirmed as Generally Recognized as Safe. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=184&showFR=1 (accessed on 21 July 2020).
- Punyauppa-path, S.; Phumkhachorn, P.; Rattanachaikunsopon, P. Nisin: Production and mechanism of antimicrobial action. Int. J. Curr. Res. 2015, 7, 47. [Google Scholar]
- Gou, J.; Lee, H.Y.; Ahn, J. Inactivation kinetics and virulence potential of Salmonella Typhimurium and Listeria monocytogenes treated by combined high pressure and nisin. J. Food Prot. 2010, 73, 2203–2210. [Google Scholar] [CrossRef] [PubMed]
- García, P.; Martínez, B.; Rodríguez, L.; Rodríguez, A. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int. J. Food Microbiol. 2010, 141, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kaletunç, G. Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. Int. J. Food Microbiol. 2010, 140, 49–56. [Google Scholar] [CrossRef]
- Klangpetch, W.; Noma, S. Inhibitory Effects of Nisin Combined with Plant-derived Antimicrobials on Pathogenic Bacteria and the Interaction with Complex Food Systems. J. Food Sci. Technol. 2018, 24, 609–617. [Google Scholar] [CrossRef]
- Moshtaghi, H.; Rashidimehr, A.; Shareghi, B. Antimicrobial Activity of Nisin and Lysozyme on Foodborne Pathogens Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli at Different pH. J. Nutr. Food Secur. 2018, 3, 193–201. [Google Scholar] [CrossRef]
- Nair, M.K.M.; Vasudevan, P.; Hoagland, T.; Venkitanarayanan, K. Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes in milk by caprylic acid and monocaprylin. Food Microbiol. 2004, 21, 611–616. [Google Scholar] [CrossRef]
- Chang, S.-S.; Redondo-Solano, M.; Thippareddi, H. Inactivation of Escherichia coli O157: H7 and Salmonella spp. on alfalfa seeds by caprylic acid and monocaprylin. Int. J. Food Microbiol. 2010, 144, 141–146. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods- a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.I. Antimicrobial activity carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, C. Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment. J. Food Prot. 2010, 73, 2270–2275. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Bedie, G.K.; Sofos, J.N.; Belk, K.E.; Scanga, J.A.; Smith, G.C. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at 4 °C in vacuum packages. LWT Food Sci. Technol. 2005, 38, 21–28. [Google Scholar] [CrossRef]
- Tramer, J.; Fowler, G.G. Estimation of nisin in foods. J. Sci. Food Agric. 1964, 15, 522–528. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Shelef, L.A. Sensitivity of six strains of Listeria monocytogenes to nisin. J. Food Prot. 1997, 60, 867–869. [Google Scholar] [CrossRef]
- Reunanen, J.; Saris, P.E.J. Survival of nisin activity in intestinal environment. Biotechnol. Lett. 2019, 31, 1229–1232. [Google Scholar] [CrossRef]
- Kabir, M.N.; Chowdhury, S.; Fouladkhah, A.C. Effects of Come-up and Come-down Times on Efficacy of Pressure-based Pasteurization of Escherichia coli O157: H7, Listeria monocytogenes, and Non-Typhoidal Salmonella Serovars. In Proceedings of the International Association for Food Protection 2019 Annual Meeting Conference, Louisville, Kentucky, 21–24 July 2019. [Google Scholar]
- Daryaei, H.; Balasubramaniam, V.M.; Yousef, A.E.; Legan, J.D.; Tay, A. Lethality enhancement of pressure-assisted thermal processing against Bacillus amyloliquefaciens spores in low-acid media using antimicrobial compounds. Food Control 2016, 59, 234–242. [Google Scholar] [CrossRef]
- Food and Drug Administration. Bacteriological Analytical Methods (FDA BAM). 2001. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count (accessed on 21 July 2020).
- Allison, A.; Fouladkhah, A. Sensitivity of Salmonella serovars and natural microflora to high-pressure pasteurization: Open access data for risk assessment and practitioners. Data Brief. 2018, 21, 480–484. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, B.; Wang, R.; Wang, T.; Hu, X.; Liao, X.; Zhang, Y. Inactivation of Staphylococcus aureus by high hydrostatic pressure in saline solution and meat slurry with different initial inoculum levels. Food Bioprod. Process. 2015, 94, 592–600. [Google Scholar] [CrossRef]
- Kaur, B.P.; Rao, P.S. Modeling the combined effect of pressure and mild heat on the inactivation kinetics of Escherichia coli, Listeria innocua, and Staphylococcus aureus in black tiger shrimp (Penaeus monodon). Front. Microbiol. 2017, 8, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Leistner, L.; Gorris, L.G. Food preservation by hurdle technology. Trends Food Sci. Technol. 1995, 6, 41–46. [Google Scholar] [CrossRef]
- Masschalck, B.; Van Houdt, R.; Michiels, C.W. High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. Int. J. Food Microbiol. 2001, 64, 325–332. [Google Scholar] [CrossRef]
- Sobrino-Lopez, A.; Martin-Belloso, O. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. J. Food Prot. 2006, 69, 345–353. [Google Scholar] [CrossRef]
- Capellas, M.; Mor-Mur, M.; Gervilla, R.; Yuste, J.; Guamis, B. Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goat’s milk fresh cheese. Food Microbiol. 2000, 17, 633–641. [Google Scholar] [CrossRef]
- Kato, C.; Li, L.; Nogi, Y.; Nakamura, Y.; Tamaoka, J.; Horikoshi, K. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 m. Appl. Environ. Microbiol. 1998, 64, 1510–1513. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, T.L.C.; Junior, B.R.D.C.L.; Ramos, A.L.; Ramos, E.M.; Piccoli, R.H.; Cristianini, M. Phenolic carvacrol as a natural additive to improve the preservative effects of high pressure processing of low-sodium sliced vacuum-packed turkey breast ham. LWT Food Sci. Technol. 2015, 64, 1297–1308. [Google Scholar] [CrossRef]
- Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 14 September 2020).
- Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, J.; Aras, S.; Kabir, M.N.; Wadood, S.; Chowdhury, S.; Fouladkhah, A.C. Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid. Int. J. Environ. Res. Public Health 2020, 17, 7033. https://doi.org/10.3390/ijerph17197033
George J, Aras S, Kabir MN, Wadood S, Chowdhury S, Fouladkhah AC. Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid. International Journal of Environmental Research and Public Health. 2020; 17(19):7033. https://doi.org/10.3390/ijerph17197033
Chicago/Turabian StyleGeorge, Jyothi, Sadiye Aras, Md Niamul Kabir, Sabrina Wadood, Shahid Chowdhury, and Aliyar Cyrus Fouladkhah. 2020. "Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid" International Journal of Environmental Research and Public Health 17, no. 19: 7033. https://doi.org/10.3390/ijerph17197033
APA StyleGeorge, J., Aras, S., Kabir, M. N., Wadood, S., Chowdhury, S., & Fouladkhah, A. C. (2020). Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid. International Journal of Environmental Research and Public Health, 17(19), 7033. https://doi.org/10.3390/ijerph17197033