Head-Out Water-Based Protocols to Assess Cardiorespiratory Fitness—Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Study Selection
2.2. Quality Assessment
3. Results
3.1. Study Selection
3.2. Quality Assessment
3.3. Protocol Description
3.3.1. Shallow Water Exercise (SWE)
3.3.2. Deep Water Exercise (DWE)
3.3.3. Other Protocols
3.4. Peak Outcomes
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, D.C.; Artero, E.G.; Sui, X.; Blair, S.N. Mortality trends in the general population: The importance of cardiorespiratory fitness. J. Psychopharmacol. 2010, 24, 27–35. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Pescatello, L.S., Ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’Reilly, M.G.; et al. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Gorman, P.H.; Scott, W.; VanHiel, L.; Tansey, K.E.; Sweatman, W.M.; Geigle, P.R. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: A randomized controlled trial. Spinal Cord 2019, 57, 471–481. [Google Scholar] [CrossRef]
- Wang, T.J.; Belza, B.; Elaine Thompson, F.; Whitney, J.D.; Bennett, K. Effects of aquatic exercise on flexibility, strength and aerobic fitness in adults with osteoarthritis of the hip or knee. J. Adv. Nurs. 2007, 57, 141–152. [Google Scholar] [CrossRef]
- Cooper, C.B.; Storer, T.W. Exercise Testing and Interpretation: A Practical Approach; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Eerden, S.; Dekker, R.; Hettinga, F.J. Maximal and submaximal aerobic tests for wheelchair-dependent persons with spinal cord injury: A systematic review to summarize and identify useful applications for clinical rehabilitation. Disabil. Rehabil. 2018, 40, 497–521. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Marinho, D.A.; Reis, V.M.; Silva, A.J.; Bragada, J.A. Physiological assessment of head-out aquatic exercises in healthy subjects: A qualitative review. J. Sports Sci. Med. 2009, 8, 179–189. [Google Scholar]
- Wilk, K.E.; Joyner, D.M. The Use of Aquatics in Orthopedic and Sports Medicine Rehabilitation and Physical Conditioning; SLACK Incorporated: Thorofare, NJ, USA, 2014. [Google Scholar]
- Meredith-Jones, K.; Waters, D.; Legge, M.; Jones, L. Upright water-based exercise to improve cardiovascular and metabolic health: A qualitative review. Complement. Ther. Med. 2011, 19, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; de la Cruz, E.; Escalante, Y.; Rodríguez, F.A. Influence of a medium-impact aquaerobic program on health-related quality of life and fitness level in healthy adult females. J. Sports Med. Phys. Fit. 2007, 47, 468–474. [Google Scholar]
- Reilly, T.; Cable, N.; Dowzer, C. The effects of a 6 week land-and water-running training programme on aerobic, anaerobic and muscle strength measures. J. Sports Sci. 2003, 21, 333–334. [Google Scholar]
- Bushman, B.A.; Flynn, M.G.; Andres, F.F.; Lambert, C.P.; Taylor, M.S.; Braun, W.A. Effect of 4 wk of deep water run training on running performance. Med. Sci. Sports Exerc. 1997, 29, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Wilber, R.L.; Moffatt, R.J.; Scott, B.E.; Lee, D.T.; Cucuzzo, N.A. Influence of water run training on the maintenance of aerobic performance. Med. Sci. Sports Exerc. 1996, 28, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Devor, S.; Merrick, M.; Buckworth, J. The effects of land vs aquatic plyometrics on power, torque, velocity and muscle soreness in women. J. Strength Cond. Res. 2004, 84–91. [Google Scholar]
- Haff, G.; Becker, B.; Lindle-Chewing, J.; Huff, K.; Sherlock, B.W.; Sherlock, L.A.; Stolt, M. Aquatic cross-training for athletes: Part 1. Strength Cond. J. 2008, 30, 18–26. [Google Scholar] [CrossRef]
- Haff, G.; Becker, B.; Lindle-Chewing, J.; Huff, K.; Sherlock, B.W.; Sherlock, L.A.; Stolt, M. Aquatic cross-training for athletes: Part 2. Strength Cond. J. 2008, 30, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Pendergast, D.R.; Moon, R.E.; Krasney, J.J.; Held, H.E.; Zamparo, P. Human Physiology in an Aquatic Environment. Compr. Physiol. 2015, 5, 1705–1750. [Google Scholar] [CrossRef]
- An, J.; Lee, I.; Yi, Y. The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environ. Res. Public Health 2019, 16, 1280. [Google Scholar] [CrossRef] [Green Version]
- Binkley, H.M.; Rudd, L.E. Head-Out Aquatic Exercise for Generally Healthy Postmenopausal Women: A Systematic Review. J. Phys. Act. Health 2018, 1–22. [Google Scholar] [CrossRef]
- Geigle, P.R.; Ogonowska-Slodownik, A.; Slodownik, R.; Gorman, P.; Scott, W.H. Measuring Peak Volume of Oxygen (Peak VO2) in Deep Water for Individuals with Spinal Cord Injury: Protocol Development. J. Aquat. Phys. Ther. 2018, 26, 30–35. [Google Scholar]
- Nagle, E.F.; Sanders, M.E.; Franklin, B.A. Aquatic High Intensity Interval Training for Cardiometabolic Health: Benefits and Training Design. Am. J. Lifestyle Med. 2017, 11, 64–76. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; Arena, R.; Ellingsen, Ø.; Harber, M.P.; Myers, J.; Ozemek, C.; Ross, R. Cardiorespiratory fitness and cardiovascular disease—The past, present, and future. Prog. Cardiovasc. Dis. 2019, 62, 86–93. [Google Scholar] [CrossRef]
- Gayda, M.; Juneau, M.; Guiraud, T.; Lambert, J.; Nigam, A. Optimization and reliability of a deep water running test in healthy adults older than 45 years. Am. J. Phys. Med. Rehab. 2010, 89, 722–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.; Stewart, D.; Pollock, N.; Letts, L.; Bosch, J.; Westmorlan, M. Guidelines for Critical Review Form—Quantitative Studies; McMaster University Occupational Therapy Evidence-Based Practice Research Group: Hamilton, ON, Canada, 1998. [Google Scholar]
- Brown, S.P.; Chitwood, L.F.; Beason, K.R.; McLemore, D.R. Deep water running physiologic responses: Gender differences at treadmill-mateched walking/running cadences. J. Strength Cond. Res. 1997, 11, 107–114. [Google Scholar] [CrossRef]
- Brown, S.P.; Chitwood, L.F.; Alvarez, J.G.; Beason, K.R.; McLemore, D.R. Predicting oxygen consumption during deep water running: Gender differences. J. Strength Cond. Res. 1997, 11, 188–193. [Google Scholar] [CrossRef]
- Littlewood, C.; Chance-Larsen, K.; McLean, S.M. Quality appraisal as part of the systematic review: A review of current methods. Int. J. Physiother. Rehab. 2010, 1, 53–58. [Google Scholar]
- D’Acquisto, L.J.; Miller, L.J.; D’Acquisto, D.M.; Roemer, K.; Fisher, M.G. Physiological and Psychophysical Aspects of Shallow Water Exercise. Int. J. Aquat. Res. Educ. 2015, 9, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.G.; Miller, L.J.; Tesfaye, J.; Roemer, K.; D’Acquisto, D.M.; D’Acquisto, L.J. Cardiorespiratory Responses to Shallow Water Exercise: A Sex Comparison. Int. J. Aquat. Res. Educ. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Nagle, E.F.; Sanders, M.E.; Gibbs, B.B.; Franklin, B.A.; Nagle, J.A.; Prins, P.J.; Johnson, C.D.; Robertson, R.J. Reliability and Accuracy of a Standardized Shallow Water Running Test to Determine Cardiorespiratory Fitness. J. Strength Cond. Res. 2017, 31, 1669–1677. [Google Scholar] [CrossRef] [Green Version]
- Greene, N.P.; Greene, E.S.; Carbuhn, A.F.; Green, J.S.; Crouse, S.F. VO2 prediction and cardiorespiratory responses during underwater treadmill exercise. Res. Q. Exerc. Sport 2011, 82, 264–273. [Google Scholar] [CrossRef]
- Broman, G.; Quintana, M.; Engardt, M.; Gullstrand, L.; Jansson, E.; Kaijser, L. Older women’s cardiovascular responses to deep-water running. J. Aging Phys. Act. 2006, 14, 29–40. [Google Scholar] [CrossRef]
- Michaud, T.J.; Brenna, D.K.; Wilder, R.P.; Sherman, N.W. Aquarunning and gains in cardiorespiratory fitness. J. Strength Cond. Res. 1995, 9, 78–84. [Google Scholar]
- Phillips, V.K.; Legge, M.; Jones, L.M. Maximal physiological responses between aquatic and land exercise in overweight women. Med. Sci. Sports Exerc. 2008, 40, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Meredith-Jones, K.; Legge, M.; Jones, L.M. Circuit Based Deep Water Running Improves Cardiovascular Fitness, Strength and Abdominal Obesity in Older, Overweight Women Aquatic Exercise Intervention in Older Adults. Med. Sport 2009, 13, 5–12. [Google Scholar] [CrossRef]
- Campbell, J.A.; D’Acquisto, L.J.; D’Acquisto, D.M.; Cline, M.G. Metabolic and cardiovascular response to shallow water exercise in young and older women. Med. Sci. Sports Exerc. 2003, 35, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Schaal, C.M.; Collins, L.; Ashley, C. Cardiorespiratory Responses to Underwater Treadmill Running Versus Land-Based Treadmill Running. Int. J. Aquat. Res. Educ. 2012, 6, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Frangolias, D.D.; Rhodes, E.C.; Taunton, J.E. The effect of familiarity with deep water running on maximal oxygen consumption. J. Strength Cond. Res. 1996, 10, 215–219. [Google Scholar]
- Michaud, T.J.; Rodriguez-Zayas, J.; Anders, F.F.; Flynn, M.G.; Lambert, C.P. Comparative exercise responses of deep-water and treadmill running. J. Strength Cond. Res. 1995, 9, 104–109. [Google Scholar]
- Alberton, C.L.; Kanitz, A.C.; Pinto, S.S.; Antunes, A.H.; Finatto, P.; Cadore, E.L.; Kruel, L.F. Determining the anaerobic threshold in water aerobic exercises: A comparison between the heart rate deflection point and the ventilatory method. J. Sports Med. Phys. Fit. 2013, 53, 358–367. [Google Scholar]
- Alberton, C.L.; Antunes, A.H.; Beilke, D.D.; Pinto, S.S.; Kanitz, A.C.; Tartaruga, M.P.; Martins Kruel, L.F. Maximal and ventilatory thresholds of oxygen uptake and rating of perceived exertion responses to water aerobic exercises. J. Strength Cond. Res. 2013, 27, 1897–1903. [Google Scholar] [CrossRef]
- Alberton, C.L.; Pinto, S.S.; Antunes, A.H.; Cadore, E.L.; Finatto, P.; Tartaruga, M.P.; Kruel, L.F. Maximal and ventilatory thresholds cardiorespiratory responses to three water aerobic exercises compared with treadmill on land. J. Strength Cond. Res. 2014, 28, 1679–1687. [Google Scholar] [CrossRef]
- Alberton, C.L.; Pinto, S.S.; Gorski, T.; Antunes, A.H.; Finatto, P.; Cadore, E.L.; Bergamin, M.; Kruel, L.F. Rating of perceived exertion in maximal incremental tests during head-out water-based aerobic exercises. J. Sports Sci. 2016, 34, 1691–1698. [Google Scholar] [CrossRef]
- Antunes, A.H.; Alberton, C.L.; Finatto, P.; Pinto, S.S.; Cadore, E.L.; Zaffari, P.; Kruel, L.F. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises. Res. Q. Exerc. Sport 2015, 86, 267–273. [Google Scholar] [CrossRef]
- Bartolomeu, R.F.; Barbosa, T.M.; Morais, J.E.; Lopes, V.P.; Bragada, J.A.; Costa, M.J. The aging influence on cardiorespiratory, metabolic, and energy expenditure adaptations in head-out aquatic exercises: Differences between young and elderly women. Women Health 2017, 57, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Dowzer, C.N.; Reilly, T.; Cable, N.T.; Nevill, A. Maximal physiological responses to deep and shallow water running. Ergonomics 1999, 42, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Rosponi, A.; Dapretto, L.; Magini, V.; Felici, F. Cardiac and metabolic demands of in place shallow water running in trained and untrained men. J. Sports Med. Phys. Fit. 2008, 48, 183–189. [Google Scholar]
- Conti, A.; Minganti, C.; Magini, V.; Felici, F. Cardiorespiratory of land and water walking on a non motorized treadmill. J. Sports Med. Phys. Fit. 2015, 55, 179–184. [Google Scholar]
- Kruel, L.F.M.; Beilke, D.D.; Kanitz, A.C.; Alberton, C.L.; Antunes, A.H.; Pantoja, P.D.; da Silva, E.M.; Pinto, S.S. Cardiorespiratory Responses to Stationary Running in Water and on Land. J. Sports Sci. Med. 2013, 594–600. [Google Scholar]
- Town, G.P.; Bradley, S.S. Maximal metabolic responses of deep and shallow water running in trained runners. Med. Sci. Sports Exerc. 1991, 23, 238–241. [Google Scholar] [CrossRef]
- Brown, S.P.; O’Donnell, D.; Kravitz, L.; Beason, K.; Alvarez, J. Regression of oxygen consumption on heart rate during supported and unsupported deep water running in healthy mixed gender subjects. J. Sports Med. Train. Rehab. 1998, 8, 291–299. [Google Scholar] [CrossRef]
- Butts, N.K.; Tucker, M.; Smith, R. Maximal responses to treadmill and deep water running in high school female cross country runners. Res. Q. Exerc. Sport 1991, 62, 236–239. [Google Scholar] [CrossRef]
- Butts, N.K.; Tucker, M.; Greening, C. Physiologic responses to maximal treadmill and deep water running in men and women. Am. J. Sports Med. 1991, 19, 612–614. [Google Scholar] [CrossRef]
- Kanitz, A.C.; Reichert, T.; Liedtke, G.V.; Pinto, S.S.; Alberton, C.L.; Antunes, A.H.; Cadore, E.L.; Kruel, L.F.M. Maximal and anaerobic threshold cardiorespiratory responses during deep-water running. Revista Brasileira de Cineantropometria & Desempenho Humano 2015, 17, 41–50. [Google Scholar]
- Melton-Rogers, S.; Hunter, G.; Walter, J.; Harrison, P. Cardiorespiratory responses of patients with rheumatoid arthritis during bicycle riding and running in water. Phys. Ther. 1996, 76, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Mercer, J.A.; Jensen, R.L. Heart rate at equivalent submaximal levels of VO2 do not differ between deep water running and treadmill running. J. Strength Cond. Res. 1998, 12, 161–165. [Google Scholar] [CrossRef]
- Ogonowska-Slodownik, A.; Geigle, P.R.; Gorman, P.H.; Slodownik, R.; Scott, W.H. Aquatic, deep water peak VO2 testing for individuals with spinal cord injury. J. Spinal Cord Med. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Svedenhag, J.; Seger, J. Running on land and in water: Comparative exercise physiology. Med. Sci. Sports Exerc. 1992, 24, 1155–1160. [Google Scholar] [CrossRef]
- Brubaker, P.; Ozemek, C.; Gonzalez, A.; Wiley, S.; Collins, G. Cardiorespiratory responses during underwater and land treadmill exercise in college athletes. J. Sport Rehab. 2011, 20, 345–354. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, B.R.; Joo, S.J.; Han, E.Y.; Kim, S.Y.; Kim, S.M.; Lee, S.Y.; Yoon, H.M. Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease. J. Cardiopulm. Rehabil. Prev. 2015, 35, 140–146. [Google Scholar] [CrossRef]
- Colado, J.C.; Brasil, R.M. Concurrent and Construct Validation of a Scale for Rating Perceived Exertion in Aquatic Cycling for Young Men. J. Sports Sci. Med. 2019, 18, 695–707. [Google Scholar]
- Costa, V.P.; Neves Martins, J.A.; de Lucas, R.D.; Perrout de Lima, J.R. Physiological responses during an incremental exercise test performed on underwater stationary bike. Sport Sci. Health 2017, 13, 87–92. [Google Scholar] [CrossRef]
- Pinto, S.S.; Brasil, R.M.; Alberton, C.L.; Ferreira, H.K.; Bagatini, N.C.; Calatayud, J.; Colado, J.C. Noninvasive Determination of Anaerobic Threshold Based on the Heart Rate Deflection Point in Water Cycling. J. Strength Cond. Res. 2016, 30, 518–524. [Google Scholar] [CrossRef]
- Silvers, W.M.; Rutledge, E.R.; Dolny, D.G. Peak cardiorespiratory responses during aquatic and land treadmill exercise. Med. Sci. Sports Exerc. 2007, 39, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Silvers, W.M.; Dolny, D.G. Reliability of peak cardiorespiratory responses during aquatic treadmill exercise. Int. J. Aquat. Res. Educ. 2008, 2, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Yazigi, F.; Pinto, S.; Colado, J.; Escalante, Y.; Armada-da-Silva, P.A.; Brasil, R.; Alves, F. The cadence and water temperature effect on physiological responses during water cycling. Eur. J. Sport Sci. 2013, 13, 659–665. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Garrido, M.F.; Bragada, J. Physiological adaptations to head-out aquatic exercises with different levels of body immersion. J. Strength Cond. Res. 2007, 21, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Benelli, P.; Ditroilo, M.; De Vito, G. Physiological responses to fitness activities: A comparison between land-based and water aerobics exercise. J. Strength Cond. Res. 2004, 18, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Dowzer, C.N.; Cable, N.T. The physiology of deep-water running. J. Sports Sci. 2003, 21, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.K.; Reid, J.; Quinn, T.J.; Shenkin, S.D. Using quality assessment tools to critically appraise ageing research: A guide for clinicians. Age Ageing 2017, 46, 359–365. [Google Scholar] [CrossRef]
Author, Year | Mode of Exercise | Pretest Screening | Familiarization | Equipment | Water Temperature [°C] | Water Depth [m] | Water Immersion Level | Warm Up | Starting Intensity | Time on Starting Intensity | Increasing Intensity | Time on Each Next Stage | Test Termination Criteria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alberton et al., 2013 [41] | stationary running (SR) frontal kick (FK) cross country skiing (CCS) | NR | yes | metronome | 31–32 | 0.95–1.30 | xiphoid process | NR | 80 cpm | 2 min | 10 cpm | 1 min | exhaustion |
Alberton et al., 2013 [42] | stationary running (SR) frontal kick (FK) jumping jack (JJ) | NR | yes | metronome | 31–32 | 0.95–1.30 | between the xiphoid process (while standing) and the shoulders (while exercising) | NR | 85 bpm | 3 min | 15 bpm | 2 min | exhaustion or unable to keep up with the cadence |
Alberton et al., 2014 [43]; Alberton et al., 2016 [44] | stationary running (SR) frontal kick (FK) cross country skiing (CCS) | NR | yes | metronome | 32 | 0.95–1.30 | xiphoid process | NR | 80 bpm | 2 min | 10 bpm | 1 min | exhaustion or unable to keep up with the cadence |
Antunes et al., 2015 [45] | stationary running (SR) frontal kick (FK) cross country skiing (CCS) adductor hop (ADH) abductor hop (ABH) jumping jacks (JJ) | NR | yes | metronome | 31–32 | 0.95–1.30 | between the xiphoid process (while standing) and the shoulders (while exercising) | NR | 80 bpm | 2 min | 10 bpm | 1 min | exhaustion or unable to keep up with the cadence |
Bartolomeu et al., 2017 [46] | Rocking horse | NR | NR | metronome | 31 | NR | xiphoid process | 6 min at starting intensity | 90 bpm | 6 min | 15 bpm | 6 min | unable to keep up with the cadence for more than 30 s |
Campbell et al., 2003 [37] | Walking/running with different arms movement | medication cardiac, PARQ; older group: modified Bruce treadmill stress test | NR | webbed gloves for maximal shallow water run | 27.5–28.0 | NR | xiphoid process to axilla | 5–10 min | self-selected; carry on conversation | 8 min | 5 different submax activities; 10−15 min rest; one maximal 300 m shallow jogging | 8 min | NR |
D’Acquisto et al., 2015 [29] | Bout 1: Jog Bout 2: Tuck Jumps With Plunge Bout 3: Cross-Country Ski Bout 4: Deep Split Jump Lunge Bout 5: Alternating Long Leg kicks | health history, physical activity questionnaire | yes | NR | 28.6 (0.3) | NR | axilla | instructor guided 6 min | RPE 9 | 5 min | RPE 11, 13, 15, 17 | 5 min | NR |
Dowzer et al., 1999 [47] | SWR | NR | yes | water shoes, metronome | 29 | 1.2 | waist | NR | 132 strides/min | 1 min | 12 strides/min 8 strides/min | 1 min | volitional exhaustion |
Fisher et al., 2019 [30] | RPE 9: Jog with swinging arms RPE 11: Tuck Jumps with Plunge RPE 13: Cross-Country Ski RPE 15: Deep Jump Lunge RPE 17: Alternating Long Leg Kicks | health history, physical activity questionnaire | yes | webbed gloves | 28.3–28.9 | NR | axilla | 6 min | RPE 9 | 5 min | RPE 9, 11, 13, 15, 17, 20 | 5 min, 1 min rest between | NR |
Conti et al., 2008 [48] | SWR | NR | yes | metronome | 29–30 | 1.2 | lower than xiphoid process | 3 min self-selected stride frequency | 12 strides additional from warm-up | 1 min | 12 strides/min | 1 min | NR |
Conti et al., 2015 [49] | SWR | NR | yes | metronome | 29.5 (2.0) | NR | umbilicus | NR | NR | 5 min | NR | 5 min | NR |
Kruel et al., 2013 [50] | SWR | NR | NR | NR | 31–32 | NR | xiphoid process | NR | 85 bpm | 2 min | 15 bpm | 2 min | exhaustion |
Nagle et al., 2017 [31] | SWR | medical inventory and PARQ | yes | water exercise shoes | 27.5 | 1.2 | below xiphoid process to the midaxillary region | NR | 4 in OMNI scale 1–10 RPE | 4 × 22 m | stage 1: 4 lengths, 10 s rest stage 2: 3 lengths, 5 s rest stage 3: 2 lengths, 3−5 s rest stage 4: 4−6 continuous | stage 1: 4–6 OMNI stage 2: 6–8 OMNI stage 3: 8–9 OMNI stage 4: > 9 on the OMNI | volitional fatigue |
Town et al., 1991 [51] | SWR | NR | yes | NR | NR | 1.3 | NR | 6 min | NR | NR | subjectively | 1 min (final stage—2 min) | NR |
Author, Year | Mode of Exercise | Pretest Screening | Familiarization | Equipment | Water Temperature [°C] | Water Depth [m] | Water Immersion Level | Warm Up | Starting Intensity | Time on Starting Intensity | Increasing Intensity | Time on Each Next Stage | Test Termination Criteria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Broman et al., 2006 [33] | DWR * | medical screening, exercise history questionnaire | 2 (25 min and 30 min) | vest, elastic cord | 27 | NR | NR | 10 min | stride frequency at the first stage of individual values of oxygen uptake measured on the treadmill | 4 min | increasing the stride frequency to the stage of the submaximal individual values of oxygen uptake measured on the treadmill | 4 min (1 min rest between each stage) | inability to continue running |
Brown et al., 1997 [26,27] | DWR * | health history questionnaire | 2 × 30 min | Aqua Jogger, belt, metronome | 29.6 (0.5) | NR | NR | NR | 72 spm | 3 min | 12 spm | 3 min | unable to keep proper cadence or DWR form |
Brown et al., 1998 [52] | DWR | NR | yes | Aqua Jogger, belt, metronome | 27.9–28.5 | NR | NR | NR | 72 spm | 3 min | 12 spm | 3 min | unable to keep proper cadence or DWR form, VO2 plateau |
Butts et al., 1991 [53]; Butts et al., 1991 [54] | DWR * | yes | yes | Wet Vest, rope | 29 | NR | NR | 5 min at 100 bpm | 120 bpm | 2 min | 20 bpm | 2 min | request of the subject or objective signs of exhaustion |
Dowzer et al., 1999 [47] | DWR * | NR | yes | wet vest, rope, metronome | 29 | NR | chin and nose level | NR | 120 strides/min | 1 min | 12 strides/min 8 strides/min | 1 min | volitional exhaustion |
Frangolias et al., 1996 [39] | DWR | water running style | yes, at least 3 sessions | buoyancy belt, sponges to maintain fists | 28 | NR | head above water | NR | NR | NR | NR | NR | NR |
Gayda et al., 2010 [24] | 3 DWR * protocols (short, intermediate, long) | medical screening | yes (5 min before first test) | metronome, floatation vest–wet, elastic cord | 30 | NR | neck | 2 min | 56 cpm | 2 min | 8–30 cpm dependent upon protocol (short, intermediate, long) | 2 min | voluntary signal participant and/or unable to maintain cadence |
Kanitz et al., 2015 [55] | DWR | NR | yes | float vest, cable, metronome | 30 | 2 | shoulder | NR | 85 bpm | 3 min | 15 bpm | 2 min | subject reached the maximum effort |
Melton-Rogers et al., 1996 [56] | DWR * | NR | NR | wet vest, elastic cord | 33 | NR | neck | NR | 92 bpm | 2 min | 6 bpm | 2 min | NR |
Mercer et al., 1998 [57] | DWR * | NR | yes | Aqua Jogger belt, bucket, wooden plank | 26.9 | NR | NR | NR | 0.57 kg weight | 1 min | 0.57 kg weight | 1 min | unable to keep the bucket from touching the deck |
Meredith-Jones et al., 2009 [36] | DWR * | modified PARQ | yes | bucket, wooden plank | 29 | 1.8 | neck level C7 | NR | 0.57 kg weight | 1 min | 0.57 kg weight | 1 min | unable to keep the bucket from touching the wooden plank |
Michaud et al., 1995 [40] | DWR * | NR | yes (3 sessions) | wet vest, bucket, tether, pulleys | 29–30 | 3.66 | head above water | yes | individually based on familiarization session | individually based on familiarization session | individually based on familiarization session | 3 min | unable to maintain proper running form, unable to remain in target area |
Michaud et al., 1995 [34] | DWR * | clearance by physician | 2–3 × 20−30 min | Aqua Jogger, metronome, headphones, testing frame | 27–29 | NR | head above water | NR | 48 cpm | 3 min | 66, 72, 76, 80, 84 cpm | 3 min | signal by the subject |
Ogonowska-Slodownik et al., 2019 [58] | DWE (arms, trunk, legs) * | NR | yes | foam dumbbells, weights, flotation belt, metronome | 31–32 | 2.13 | NR | 3 min | 40 bpm | 3 min | 10 bpm | 1 min | volitional fatigue or unable to perform the required work rate |
Phillips et al., 2008 [35] | DWR * | medical screening, exercise history questionnaire | yes | flotation belt, bucket, wooden plank | 29 | 1.8 | NR | individual | 0.57 kg weight | 1 min | 0.57 kg weight | 1 min | unable to keep the bucket from touching the wooden plank |
Svedenhag et al., 1992 [59] | DWR | NR | yes | buoyancy jacket | 25 | NR | NR | 5 min | 115 bpm | 4 min | stage 1: 115 bpm, 1 min rest; stage 2: 130 bpm, 1 min rest; stage 3: 145 bpm, 1 min rest; stage 4: 155 bpm, 3–4 min rest; stage 5: maximal intensity; stage 6: exhaustion | 4 min + 1–2 min + 1 min | exhaustion |
Town et al., 1991 [51] | DWR | NR | yes | NR | NR | 2.5–4 | NR | 6 min | NR | NR | subjectively every minute | 1 min (final stage—2 min) | NR |
Author, Year | Mode of Exercise | Pretest Screening | Familiarization | Equipment | Water Temperature [°C] | Water Depth [m] | Water Immersion Level | Warm Up | Starting Intensity | Time on Starting Intensity | Increasing Intensity | Time on Each Next Stage | Test Termination Criteria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brubaker et al., 2011 [60] | UTM | NR | NR | underwater treadmill (Hydro-worx 1000), resistance jets | 28 | NR | xiphoid process | NR | 2.3 km/h | 2 min | 2.3 km/h 4.9 km/h 7.3 km/h 9.6 km/h 9.6 km/h, 30% resistance jets 9.6 km/h, 40% resistance jets 9.6 km/h, 50% resistance jets | 2 min | NR |
Choi et al., 2015 [61] | UTM | NR | NR | underwater treadmill (Focus, Hydro-physio) | 28 | NR | midpoint umbilicus and xiphoid process | 5 min | 2.0 km/h | 1 min | 0.5 km/h | 1 min | participant request and/or ACSM guidelines |
Colado et al., 2019 [62] | water cycling | NR | yes | underwater bicycle (Hydro-rider), metronome | 30 | NR | xiphoid process | NR | 100 bpm | 3 min | 15 bpm | 2 min | exhaustion, not maintaining pedal rate |
Costa et al., 2017 [63] | water cycling Frontal surface area (FSA) FSA1: 500cm2 FSA2: 580cm2 FSA3: 660cm2 | NR | NR | underwater bicycle (Hydro-cycle) | 28 | NR | xiphoid process | 5 min/50 rpm | 50 rpm | 1 min | 3 rpm | 1 min | exhaustion |
Greene et al., 2011 [32] | UTM | stratified according to ACSM standards for risk of cardiovascular disease, physiological examination | yes | underwater treadmill (Hydro-worx 1000 and 2000) | 32–34 | NR | fourth intercostal space | NR | 53.6 m·min-1 | 3 min | 26.8 m·min−1 | 3 min | voluntary exhaustion, the exercise protocol completed |
Pinto et al., 2016 [64] | water cycling | NR | yes | underwater bicycle (Hydro-rider), compact disc | 30 | NR | NR | NR | 100 bpm | 3 min | 15 bpm | 2 min | exhaustion |
Schaal et al., 2012 [38] | UTM (with and without underwater running shoes) | NR | 2 × 5 min | underwater treadmill (Hydro-worx 1000), water running shoes | 20.6–35.6 | NR | xiphoid process | 1–5 min | 0.5 mph and 40% water jets | 1 min | 0.5 mph every min for 4−5 min, then 0.5 mph every min and 10% water jets every min | 1 min | volitional or treadmill’s speed 7.5 mph reached and maintained for minute |
Silvers et al., 2007 [65]; Silvers et al., 2008 [66] | UTM | NR | NR | underwater treadmill (Hydro-worx 2000), resistance jets | 28 | NR | xiphoid process | 6 min | 13.4 m/min and 40% water jets | 1 min | 13.4 m/min every min for 4−5 min, then 13.4 m/min every min and 10% water jets every min | 1 min | volitional exhaustion |
Yazigi et al., 2013 [67] | water cycling (at two water temperature) | NR | yes | underwater bicycle (Hydro-rider) | 27 and 31 | adapted | xiphoid process | NR | 50 rpm | 3 min | 10 rpm till 70 rpm; 5 rpm after 70 rpm | 3 min | unable to maintain the cadence |
Author, Year | Mode of Exercise | Population | AQUA | LAND | |||||
---|---|---|---|---|---|---|---|---|---|
Characteristic | Age of Participants Mean (SD) | Mean VO2peak/VO2max (SD) (mL·kg–1·min–1) | Mean HRmax (SD) (bpm) | Mean RER (SD) | Mean Time to Exhaustion (SD) (min) | Mean RPE (SD) | Mean VO2peak/VO2max (SD) (mL·kg−1·min−1) | ||
Alberton et al., 2013 [41] | SWE | F = 20 (active) | 24 (2.5) | SR: 30.31 (5.21) FK: 30.95 (3.61) CCS: 29.88 (4.44) | SR: 186 (7) FK: 184 (7) CCS: 182 (12) | SR: 1.38 (0.11) FK: 1.32 (0.09) CCS: 1.27 (0.12) | SR: 9.93 (1.59) FK: 8.52 (1.23) CCS: 8.58 (1.21) | SR: 18.85 (0.49) FK: 18.80 (0.52) CCS: 18.75 (0.55) | NA |
Alberton et al., 2013 [42] | SWE/LTM | F = 9 | 22.89 (1.81) | SR: 34.00 (3.90) FK: 33.77 (2.74) JJ: 23.95 (3.09) | NR | NR | NR | SR: 19.22 (0.42) FK: 18.67 (0.48) JJ: 18.89 (0.32) | 39.32 (3.70) |
Alberton et al., 2014 [43] | SWE/LTM | F = 20 (active) | 24 (2.5) | SR: 30.31 (5.21) FK: 30.95 (3.61) CCS: 29.88 (4.44) | SR: 185.94 (6.99) FK: 184.31 (7.16) CCS: 182.25 (12.21) | SR: 1.38 (0.11) FK: 1.32 (0.09) CCS: 1.27 (0.12) | SR: 9.93 (1.59) FK: 8.52 (1.23) CCS: 8.58 (1.21) | SR: 18.85 (0.49) FK: 18.80 (0.52) CCS: 18.75 (0.55) | 36.03 (4.10) |
Antunes et al., 2015 [45] | SWE | F = 12 (active, students) | 24 (2) | SR: 28.9 (4.7) FK: 30.2 (2.5) CCS: 29.1 (3.3) ADH: 24.5 (6.3) ABH: 25.2 (3.6) JJ: 20.6 (4.1) | SR: 186.3 (5.0) FK: 184.6 (5.1) CCS: 183.8 (8.8) ADH: 180.7 (9.3) ABH: 178.5 (9.8) JJ: 167.8 (16.2) | NR | NR | NR | NA |
Bartolomeu et al., 2017 [46] | SWE | F young = 19 F older = 18 | young: 22.16 (2.63) older: 65.06 (5.77) | young: 44.49 (1.88) older: 32.98 (1.72) | young: 192.49 (1.89) older: 162.46 (4.14) | NR | NR | young: 16.42 (1.61) older: 15.67 (1.53) | NA |
Broman et al., 2006 [33] | DWR/LTM | F = 11 (older women) | 70 (2) | 1.30 (0.14) L/min | NR | NR | NR | NR | 1.82 (0.2) L/min |
Brown et al., 1997 [26,27] | DWR/LTM | F = 12 M = 12 (healthy, recreational exercisers) | F: 21 (1.9) M: 20 (0.8) | F: 30.1 (4.5) M: 39.1 (8.3) | F: 173.9 (7.3) M: 183.8 (7.7) | NR | NR | NR | F: 40.1 (3.1) M: 45.2 (4.4) |
Brown et al., 1998 [52] | DWR | F = 15 M = 18 (students) | F: 21.3 (2.2) M: 22.8 (2.7) | F: 34.1 (5.0) M: 37.1 (7.1) | F: 181 (8) M: 176 (9) | NR | NR | NR | NA |
Butts et al., 1991 [53] | DWR/LTM | F = 12 (runners) | 15.4 (1.1) | 48.8 (9.1) | 180.3 (8.0) | 1.01 (0.08) | NR | 19.3 (0.6) | 54.7 (7.0) |
Butts et al., 1991 [54] | DWR/LTM | F = 12 M = 12 (active) | F: 21.9 (2.4) M: 20.6 (1.9) | F: 46.8 (5.9) M: 58.4 (3.9) | F: 179 (7.5) M: 183.4 (5.9) | F: 1.09 (0.04) M: 1.11 (0.03) | NR | NR | F: 55.7 (4.8) M: 64.5 (2.8) |
Campbell et al., 2003 [37] | SWE | F young = 11 F older = 11 | young: 21.3 (0.4) older: 66.7 (0.9) | young: 37.90 (2.21) older: 21.80 (0.91) | young: 181.7 (2.7) older: 156.2 (4.5) | young: 1.11 (0.06) older:1.19 (0.04) | NR | young: 17.0 (0.4) older: 17.2 (0.6) | NA |
Choi et al., 2015 [61] | UTM/LTM | F = 4 M = 17 (patients with coronary artery disease) | 59.9 (9.1) | 29.8 (4.8) | 131.9 (13.7) | 0.97 (0.07) | 12.4 (3.7) | 17.0 (0.9) | 31.1 (5.3) |
Colado et al., 2019 [62] | Water cycling | M = 30 (active students) | 22.37 (2.31) | 46.89 (5.64) | 173 (28) | NR | NR | 19.0 (0.71) | NA |
Conti et al., 2008 [48] | SWR/LTM | M = 12 untrained (UT) and trained (T) (pentathlon Olympic athletes) | UT: 22 (1.0) T: 19 (1.0) | UT: 45.2 (6.8) T: 57.2 (3.9) | UT: 182 (8.9) T: 177 (7.1) | UT: 1.1 (0.09) T: 1.0 (0.04) | NR | NR | UT: 47.9 (3.6) T: 68.9 (5.1) |
Costa et al., 2017 [63] | Water cycling | M = 15 (healthy) | 24.1 (4.0) | FSA1: 44.2 (7.3) FSA2: 45.0 (7.8) FSA3: 44.2 (6.6) | FSA1: 182 (10) FSA2: 183 (8) FSA3: 183 (10) | NR | NR | FSA1: 9.8 (0.4) FSA2: 9.9 (0.3) FSA3: 9.9 (0.3) | NA |
D’Acquisto et al., 2015 [29] | SWE | F = 9 (healthy, active) | 26 (6) | 41.3 (4.6) | 181 (7) | 1.05 (0.05) | NR | 19.7 (0.5) | NA |
Dowzer et al., 1999 [47] | SWR, DWR/LTM | M = 15 (competitive runners) | 40.93 (9.48) | SWR: 45.94 (6.1) DWR: 41.27 (6.4) | SWR: 165 (16) DWR: 153 (16) | SWR: 1.07 (0.1) DWR: 1.08 (0.1) | NR | NR | 55.39 (8.46) |
Fisher et al., 2019 [30] | SWE | F = 9 M = 9 (active) | F: 26 (6) M: 24 (1) | F: 41.3 (4.6) M: 42.8 (4.7) | F: 181 (7) M: 185 (7) | F: 1.05 (0.05) M: 1.08 (0.06) | NR | F: 19.7 (0.5) M: 19.4 (0.5) | NA |
Frangolias et al., 1996 [39] | DWR/LTM | F = 8 M = 14 UT (untrained in DWR) = 6 T (trained in DWR) = 16 | UT: 26.3 (4.7) T: 26.7 (4.7) | UT:53.5 (6.2) T: 53.8 (5.4) | UT: 173.8 (10.1) T: 172.6 (14.0) | UT:1.14 (0.04) T: 1.12 (0.04) | NR | NR | UT: 63.8 (3.0) T: 58.8 (6.2) |
Gayda et al., 2010 [24] | DWR/LTM | F = 13 M = 11 (healthy, active, older) | 60 (6) | S: 27.83 (8.03) I: 26.22 (7.04) L: 26.33 (8.1) (ml/LBM/min) | S: 139 (14) I: 141 (11) L: 135 (16) | S: 0.93 (0.09) I: 0.99 (0.16) L: 1.00 (0.14) | S: 7.3 I: 10.31 L: 13.86 | NR | 49.39 (14.4) (ml/LBM/min) |
Greene et al., 2011 [32] | UTM/LTM | F = 28 M = 27 (healthy) | F: 41 (12) M: 41 (14) | F: 28.64 (9.0) M: 33.32 (7.35) | F: 167 (17) M: 167 (16) | F: 1.02 (0.09) M: 1.05 (0.08) | NR | F: 17 (2) M: 17 (2) | F: 27.55 (7.90) M: 33.02 (8.63) |
Kanitz et al., 2015 [55] | DWR/LTM | F = 12 (active) | 23.2 (1.9) | 22.5 (4.1) | 174 (9) | NR | NR | NR | 33.7 (3.9) |
Kruel et al., 2013 [50] | SWR/LTM, SRL | F = 9 (active) | 23 (1.9) | 34.00 (3.9) | 187.25 (6.75) | NR | NR | NR | LTM: 38.98 (3.39) SRL: 34.88 (3.64) |
Melton-Rogers et al., 1996 [56] | DWR/bicycle ergometry | F = 8 (rheumatoid arthritis) | 35.88 (2.85) | 20.32 (7.33) | 178.75 (30.10) | 1.28 (0.27) | NR | 18.13 (1.73) | 23.35 (9.17) |
Mercer et al., 1998 [57] | DWR/LTM | F = 13 M = 15 | F: 21 (1.3) M: 24.3 (4.7) | 44 (10) | 177 (9) | NR | NR | NR | 54 (13) |
Meredith-Jones et al., 2009 [36] | DWR | F = 18 (sedentary, overweight) | 59 (8.6) | *pre: 1.37 (0.10) L.min-1 *post: 1.51 (0.08) L.min−1 | NR | NR | NR | NR | NA |
Michaud et al., 1995 [40] | DWR/LTM | M = 6 (runners) | 25.5 (5.1) | 3.8 (0.11) L/m | 168.8 (5.2) | 1.0 (0.08) | NR | 9 (1) | 4.3 (0.10) L/m |
Michaud et al., 1995 [34] | DWR/LTM | F = 8 M = 2 (healthy, sedentary) | 32.6 (6.8) | *pre: 1.79 (0.59) L.min−1 *post: 2.15 (0.59) L.min−1 | *pre: 172 (16.7) *post: 175 (13.9) | *pre: 1.21 (0.12) *post: 1.24 (0.09) | NR | *pre: 9.5 (0.85) *post: 9.9 (0.31) | *pre: 2.25 (0.57) L.min−1 *post: 2.49 (0.68) L.min−1 |
Nagle et al., 2017 [31] | SWR/LTM | F = 23 (healthy) | 20 (3) | 37.1 (6.8) | 181 (11) | 1.09 (0.12) | NR | 9.6 (0.8) | 44.2 (8.4) |
Ogonowska-Slodownik et al., 2019 [58] | DWE/arm cycle ergometry | F = 4 M = 13 (spinal cord injury) | 45.7 (11.6) | test 1: 18.63 (5.26) test 2: 18.17 (5.49) | NR | NR | NR | 17.41 (2.88) | test 1: 1.54 (5.00) test 2: 17.68 (5.55) |
Phillips et al., 2008 [35] | DWR/LTM | F = 20 (healthy, overweight) | 48.0 (7.1) | 22.5 (4.9) | 159 (16) | 1.03 (0.06) | 4.78 (1.32) | 17 (2) | 27.7 (4.7) |
Pinto et al., 2016 [64] | Water cycling | M = 27 (fit university students) | 22.46 (2.35) | 55.04 (8.64) | 186 (10) | NR | 14.87 (1.75) | NR | NA |
Schaal et al., 2012 [38] | UTM/LTM | M = 14 (triathletes) | 35.1 (9.8) | without: 51.77 (8.7) with: 53.2 (6.8) | without: 172.8 (9.7) with: 172.5 (12.8) | without: 1.12 (0.09) with: 1.13 (0.10 | NR | without: 18.5 (1.1) with: 19.3 (0.77) | 53.01 (6.9) |
Silvers et al., 2007 [65] | UTM/LTM | F = 11 M = 12 (recreationally competitive runners) | F: 22.1 (2.3) M: 24.8 (3.8) | 52.8 (7.7) | 188.8 (10.4) | 1.15 (0.04) | 8.8 (1.5) | 18.4 (1.4) | 52.5 (8.4) |
Silvers et al., 2008 [66] | UTM | F = 11 M = 13 (recreationally competitive runners) | 25 (3) | trial 1: 3.65 (0.80) L/min trial 2: 3.67 (0.80) L/min | trial 1: 187 (13) trial 2: 187 (14) | trial 1: 1.12 (0.05) trial 2: 1.12 (0.10) | trial 1: 10.0 (1.3) trial 2: 10.2 (1.3) | trial 1: 19 (1) trial 2: 19 (1) | NA |
Svedenhag et al., 1992 [59] | DWR/LTM | M = 10 (runners) | 26.4 | 4.03 (0.13) l/min | 172 (3) | NR | NR | NR | 4.60 (0.14) |
Yazigi et al., 2013 [67] | Water cycling/bicycle ergometry | M = 10 (active students) | 22 (1) | 27 °C: 52.5 (10.1) 31 °C: 62.2 (12.4) | 27 °C: 188 (13) 31 °C: 185 (9) | NR | NR | NR | 62.2 (10.1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogonowska-Slodownik, A.; Richley Geigle, P.; Morgulec-Adamowicz, N. Head-Out Water-Based Protocols to Assess Cardiorespiratory Fitness—Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 7215. https://doi.org/10.3390/ijerph17197215
Ogonowska-Slodownik A, Richley Geigle P, Morgulec-Adamowicz N. Head-Out Water-Based Protocols to Assess Cardiorespiratory Fitness—Systematic Review. International Journal of Environmental Research and Public Health. 2020; 17(19):7215. https://doi.org/10.3390/ijerph17197215
Chicago/Turabian StyleOgonowska-Slodownik, Anna, Paula Richley Geigle, and Natalia Morgulec-Adamowicz. 2020. "Head-Out Water-Based Protocols to Assess Cardiorespiratory Fitness—Systematic Review" International Journal of Environmental Research and Public Health 17, no. 19: 7215. https://doi.org/10.3390/ijerph17197215
APA StyleOgonowska-Slodownik, A., Richley Geigle, P., & Morgulec-Adamowicz, N. (2020). Head-Out Water-Based Protocols to Assess Cardiorespiratory Fitness—Systematic Review. International Journal of Environmental Research and Public Health, 17(19), 7215. https://doi.org/10.3390/ijerph17197215