Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts
Abstract
:1. Introduction
2. State-Of-The-Art Liquid Reactions
2.1. Hydrothermal Treatment
2.2. Biochemical/Microbial Degradation
2.3. Photochemical Reduction
2.4. Hetero- and Homogenous Redox Catalysis
3. Mechanochemical Decomposition of PFASs and Involved Reaction Mechanisms
3.1. Lewis Base/Brönstedt Base-Assisted Reactions
3.2. Lewis Acid-Assisted Reactions
3.3. Oxidant-Assisted Reactions
4. Future Prospect—Applicability in Remediation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaider, L.A.; Balan, S.A.; Blum, A.; Andrews, D.Q.; Strynar, M.J.; Dickinson, M.E.; Lunderberg, D.M.; Lang, J.R.; Peaslee, G.F. Fluorinated compounds in U.S. fast food packaging. Environ. Sci. Technol. Lett. 2017, 4, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Schultes, L.; Peaslee, G.F.; Brockman, J.D.; Majumdar, A.; McGuinness, S.R.; Wilkinson, J.T.; Sandblom, O.; Ngwenyama, R.A.; Benskin, J.P. Total fluorine measurements in food packaging: How do current methods perform? Environ. Sci. Technol. Lett. 2019, 6, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Hill, P.J.; Taylor, M.; Goswami, P.; Blackburn, R.S. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere 2017, 181, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Kissa, E. Fluorinated Surfactants and Repellents, 2nd ed.; Taylor & Francis: Basel, Switzerland, 2001. [Google Scholar]
- Lehmler, H.J. Synthesis of environmentally relevant fluorinated surfactants—A review. Chemosphere 2005, 58, 1471–1496. [Google Scholar] [CrossRef]
- Buck, R.C.; Murphy, P.M.; Pabon, M. Chemistry, properties, and uses of commercial fluorinated surfactants. In Polyfluorinated Chemicals and Transformation Products; Knepper, T.P., Lange, F.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–24. [Google Scholar]
- Pabon, M.; Corpart, J.M. Fluorinated surfactants: Synthesis, properties, effluent treatment. J. Fluor. Chem. 2002, 114, 149–156. [Google Scholar] [CrossRef]
- Mumtaz, M.; Bao, Y.; Liu, L.; Huang, J.; Cagnetta, G.; Yu, G. Per- and polyfluoroalkyl substances in representative fluorocarbon surfactants used in Chinese film-forming foams: Levels, profile shift, and environmental implications. Environ. Sci. Technol. Lett. 2019, 6, 259–264. [Google Scholar] [CrossRef]
- Scott, P.J.H.; Campbell, I.B.; Steel, P.G. A general method for the preparation of perfluoroalkanesulfonyl chlorides. J. Fluor. Chem. 2005, 126, 1196–1201. [Google Scholar] [CrossRef]
- Posner, S. Perfluorinated compounds: Occurrence and uses in products. In Polyfluorinated Chemicals and Transformation Products; Knepper, T.P., Lange, F.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 25–39. [Google Scholar]
- Siegemund, G.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B.; Kirsch, P. Fluorine compounds, organic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Weinheim, Germany, 2016; pp. 1–56. [Google Scholar]
- Kirsch, P. Modern Fluoroorganic Chemistry; Wiley: Weinheim, Germany, 2013. [Google Scholar]
- Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem. 2001, 109, 3–11. [Google Scholar] [CrossRef]
- Jia, X.H.; Luo, Y.Z.; Huang, R.; Bo, H.D.; Liu, Q.Y.; Zhu, X.H. Spreading kinetics of fluorocarbon surfactants on several liquid fuels surfaces. Colloids Surf. A 2020, 589, 124441. [Google Scholar] [CrossRef]
- Koch, A.; Aro, R.; Wang, T.; Yeung, L.W.Y. Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples. Trends Anal. Chem. 2020, 123, 115423. [Google Scholar] [CrossRef]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Hekster, F.M.; Laane, R.W.P.M.; de Voogt, P. Environmental and toxicity effects of perfluoroalkylated substances. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2003; pp. 99–121. [Google Scholar]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenland, K.; Fletcher, T.; Savitz, D.A. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ. Health Perspect. 2010, 118, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.L.; Symons, J.M. Carcinogenicity of perfluoroalkyl compounds. In Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; DeWitt, J.C., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 265–304. [Google Scholar]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E.L. Polyfluorinated compounds: Past, present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef] [PubMed]
- Lallas, P.L. The Stockholm convention on persistent organic pollutants. Am. J. Int. Law 2017, 95, 692–708. [Google Scholar] [CrossRef]
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef]
- Loos, R.; Gawlik, B.M.; Locoro, G.; Rimaviciute, E.; Contini, S.; Bidoglio, G. EU-wide survey of polar organic persistent pollutants in european river waters. Environ. Pollut. 2009, 157, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef]
- Theobald, N.; Caliebe, C.; Gerwinski, W.; Huhnerfuss, H.; Lepom, P. Occurrence of perfluorinated organic acids in the North and Baltic seas. part 1: Distribution in sea water. Environ. Sci. Pollut. Res. 2011, 18, 1057–1069. [Google Scholar] [CrossRef]
- Theobald, N.; Caliebe, C.; Gerwinski, W.; Huhnerfuss, H.; Lepom, P. Occurrence of perfluorinated organic acids in the North and Baltic Seas. Part 2: Distribution in sediments. Environ. Sci. Pollut. Res. 2012, 19, 313–324. [Google Scholar] [CrossRef]
- Gellrich, V. Sorption und Verbreitung per- und Polyfluorierter Chemikalien (PFAS) in Wasser und Boden. Ph.D. Thesis, Justus-Liebig-Universität Gießen, Gießen, Germany, 2014. [Google Scholar]
- Costanza, J.; Arshadi, M.; Abriola, L.M.; Pennell, K.D. Accumulation of PFOA and PFOS at the air-water interface. Environ. Sci. Technol. Lett. 2019, 6, 487–491. [Google Scholar] [CrossRef]
- Kärrman, A.; Wang, T.; Kallenborn, R.; Langseter, A.M.; Grønhovd, S.M.; Ræder, E.M.; Lyche, J.L.; Yeung, L.; Chen, F.; Eriksson, U.; et al. PFASs in the Nordic Environment Screening of Poly-and Perfluoroalkyl Substances (PFASs) and Extractable Organic Fluorine (EOF) in the Nordic Environment, 515 ed.; TemaNord; Nordisk Ministerråd: Copenhagen, Denmark, 2019; p. 153. ISSN 0908-6692. [Google Scholar]
- Liu, S.; Junaid, M.; Zhong, W.; Zhu, Y.; Xu, N. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry. Chemosphere 2020, 251, 126327. [Google Scholar] [CrossRef] [PubMed]
- Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere 2013, 91, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Vierke, L.; Moller, A.; Klitzke, S. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions. Environ. Pollut. 2014, 186, 7–13. [Google Scholar] [CrossRef]
- Mussabek, D.; Ahrens, L.; Persson, K.M.; Berndtsson, R. Temporal trends and sediment-water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment. Chemosphere 2019, 227, 624–629. [Google Scholar] [CrossRef]
- Higgins, C.P.; Field, J.A.; Criddle, C.S.; Luthy, R.G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ. Sci. Technol. 2005, 39, 3946–3956. [Google Scholar] [CrossRef]
- Yeung, L.W.; De Silva, A.O.; Loi, E.I.; Marvin, C.H.; Taniyasu, S.; Yamashita, N.; Mabury, S.A.; Muir, D.C.; Lam, P.K. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. Environ. Int. 2013, 59, 389–397. [Google Scholar] [CrossRef]
- Codling, G.; Vogt, A.; Jones, P.D.; Wang, T.; Wang, P.; Lu, Y.L.; Corcoran, M.; Bonina, S.; Li, A.; Sturchio, N.C.; et al. Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere 2014, 114, 203–209. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.; Giesy, J.P.; Lu, Y. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China. Chemosphere 2013, 91, 751–757. [Google Scholar] [CrossRef]
- Tan, B.; Wang, T.; Wang, P.; Luo, W.; Lu, Y.; Romesh, K.Y.; Giesy, J.P. Perfluoroalkyl substances in soils around the Nepali Koshi River: Levels, distribution, and mass balance. Environ. Sci. Pollut. Res. 2014, 21, 9201–9211. [Google Scholar] [CrossRef]
- Campos Pereira, H.; Ullberg, M.; Kleja, D.B.; Gustafsson, J.P.; Ahrens, L. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon—Effect of cation composition and pH. Chemosphere 2018, 207, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rhodes, G.; Ge, J.; Yu, X.; Li, H. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere 2020, 261, 127584. [Google Scholar] [PubMed]
- Felizeter, S.; Jurling, H.; Kotthoff, M.; De Voogt, P.; McLachlan, M.S. Influence of soil on the uptake of perfluoroalkyl acids by lettuce: A comparison between a hydroponic study and a field study. Chemosphere 2020, 260, 127608. [Google Scholar] [CrossRef]
- Sebastiano, M.; Angelier, F.; Blevin, P.; Ribout, C.; Sagerup, K.; Descamps, S.; Herzke, D.; Moe, B.; Barbraud, C.; Bustnes, J.O.; et al. Exposure to PFAS is associated with telomere length dynamics and demographic responses of an arctic top predator. Environ. Sci. Technol. 2020, 54, 10217–10226. [Google Scholar] [CrossRef]
- Sharp, S.; Sardina, P.; Metzeling, L.; McKenzie, R.; Leahy, P.; Menkhorst, P.; Hinwood, A. Per- and polyfluoroalkyl substances in ducks and the relationship with concentrations in water, sediment, and soil. Environ. Toxicol. Chem. 2020. [Google Scholar] [CrossRef]
- Spaan, K.M.; van Noordenburg, C.; Plassmann, M.M.; Schultes, L.; Shaw, S.; Berger, M.; Heide-Jorgensen, M.P.; Rosing-Asvid, A.; Granquist, S.M.; Dietz, R.; et al. Fluorine mass balance and suspect screening in marine mammals from the northern hemisphere. Environ. Sci. Technol. 2020, 54, 4046–4058. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 2005, 51, 658–668. [Google Scholar] [CrossRef]
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. Trends Anal. Chem. 2019, 121, 115410. [Google Scholar] [CrossRef]
- Shoeib, M.; Harner, T.; Vlahos, P. Perfluorinated chemicals in the arctic atmosphere. Environ. Sci. Technol. 2006, 40, 7577–7583. [Google Scholar] [CrossRef]
- Martin, J.W.; Kannan, K.; Berger, U.; de Voogt, P.; Field, J.; Franklin, J.; Giesy, J.P.; Harner, T.; Muir, D.C.; Scott, B.; et al. Analytical challenges hamper perfluoroalkyl research. Environ. Sci. Technol. 2004, 38, 248A–255A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skutlarek, D.; Exner, M.; Färber, H. Perfluorierte Tenside (PFT) in der aquatischen Umwelt und im Trinkwasser. Umweltwiss. Schadst. Forsch. 2006, 18, 151–154. [Google Scholar]
- Rayne, S.; Forest, K. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J. Environ. Sci. Health A 2009, 44, 1145–1199. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Oyang, X.; Zhao, Y.; Tu, T.; Tian, X.; Li, L.; Zhao, Y.; Li, J.; Xiao, Z. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere 2019, 225, 659–667. [Google Scholar] [CrossRef]
- Kalbe, U.; Bandow, N.; Bredow, A.; Mathies, H.; Piechotta, C. Column leaching tests on soils containing less investigated organic pollutants. J. Geochem. Explor. 2014, 147, 291–297. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, X.; Sun, Y.; Ji, R.; Gao, B.; Wu, J. Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: Importance of soil organic matter and mineral contents, and solution ionic strength. J. Contam. Hydrol. 2019, 225, 103477. [Google Scholar] [CrossRef]
- Li, P.; Zhi, D.; Zhang, X.; Zhu, H.; Li, Z.; Peng, Y.; He, Y.; Luo, L.; Rong, X.; Zhou, Y. Research progress on the removal of hazardous perfluorochemicals: A review. J. Environ. Manag. 2019, 250, 109488. [Google Scholar] [CrossRef]
- Mahinroosta, R.; Senevirathna, L. A review of the emerging treatment technologies for PFAS contaminated soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Zhang, Y.; Moores, A.; Liu, J.; Ghoshal, S. New insights into the degradation mechanism of perfluorooctanoic acid by persulfate from density functional theory and experimental data. Environ. Sci. Technol. 2019, 53, 8672–8681. [Google Scholar] [CrossRef]
- Khan, M.Y.; So, S.; da Silva, G. Decomposition kinetics of perfluorinated sulfonic acids. Chemosphere 2020, 238, 124615. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Liu, X.; Wu, X.; Sun, Y.; Gao, B.; Wu, J. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media. Water Res. 2020, 175, 115685. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—A review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Nzeribe, N.; Crimi, M.; Thagard, S.M.; Holsen, T.M. Physico-chemical processes for the treatment of per- and polyfluoroalkyl substances (PFAS): A review blossom. Crit. Rev. Environ. Sci. Technol. 2019, 49, 866–915. [Google Scholar] [CrossRef]
- Yang, L.; He, L.; Xue, J.; Ma, Y.; Xie, Z.; Wu, L.; Huang, M.; Zhang, Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. J. Hazard. Mater. 2020, 393, 122405. [Google Scholar] [CrossRef] [PubMed]
- Ross, I.; McDonough, J.; Miles, J.; Storch, P.; Thelakkat, K.P.; Kalve, E.; Hurst, J.; Dasgupta, S.S.; Burdick, J. A review of emerging technologies for remediation of PFASs. Remediat. J. 2018, 28, 101–126. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, C.; Li, F.; Chen, J.; Zhou, Q. Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res. 2010, 44, 2939–2947. [Google Scholar] [CrossRef]
- Song, Z.; Tang, H.; Wang, N.; Zhu, L. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. J. Hazard. Mater. 2013, 262, 332–338. [Google Scholar] [CrossRef]
- Tian, H.; Gao, J.; Li, H.; Boyd, S.A.; Gu, C. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite. Sci. Rep. 2016, 6, 32949. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Huang, J.; Cagnetta, G.; Yu, G. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/sulfite reduction. Water Res. 2019, 163, 114907. [Google Scholar] [CrossRef]
- Bentel, M.J.; Yu, Y.; Xu, L.; Li, Z.; Wong, B.M.; Men, Y.; Liu, J. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 2019, 53, 3718–3728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojanowicz, M.; Bartosiewicz, I.; Bojanowska-Czajka, A.; Kulisa, K.; Szreder, T.; Bobrowski, K.; Nichipor, H.; Garcia-Reyes, J.F.; Nalecz-Jawecki, G.; Meczynska-Wielgosz, S.; et al. Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. Chem. Eng. J. 2019, 357, 698–714. [Google Scholar] [CrossRef]
- Su, Y.; Rao, U.; Khor, C.M.; Jensen, M.G.; Teesch, L.M.; Wong, B.M.; Cwiertny, D.M.; Jassby, D. Potential-driven electron transfer lowers the dissociation energy of the C-F bond and facilitates reductive defluorination of perfluorooctane sulfonate (PFOS). ACS Appl. Mater. Interfaces 2019, 11, 33913–33922. [Google Scholar] [CrossRef] [PubMed]
- Bentel, M.J.; Yu, Y.; Xu, L.; Kwon, H.; Li, Z.; Wong, B.M.; Men, Y.; Liu, J. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: Structure-reactivity relationships and environmental implications. Environ. Sci. Technol. 2020, 54, 2489–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Li, C.; Gao, J.; Dong, H.; Chen, Y.; Wu, B.; Gu, C. Efficient reductive destruction of perfluoroalkyl substances under self-assembled micelle confinement. Environ. Sci. Technol. 2020, 54, 5178–5185. [Google Scholar] [CrossRef] [PubMed]
- Bentel, M.J.; Liu, Z.K.; Yu, Y.C.; Gao, J.Y.; Men, Y.J.; Liu, J.Y. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: Reaction mechanisms and system efficiencies at pH 12. Environ. Sci. Technol. Lett. 2020, 7, 351–357. [Google Scholar] [CrossRef]
- Cui, J.; Gao, P.; Deng, Y. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): A critical review. Environ. Sci. Technol. 2020, 54, 3752–3766. [Google Scholar] [CrossRef]
- Xiao, F.; Sasi, P.C.; Yao, B.; Kubatova, A.; Golovko, S.A.; Golovko, M.Y.; Soli, D. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environ. Sci. Technol. Lett. 2020, 7, 343–350. [Google Scholar] [CrossRef]
- Sorengard, M.; Lindh, A.S.; Ahrens, L. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE 2020, 15, e0234476. [Google Scholar] [CrossRef]
- Yu, J.; Nickerson, A.; Li, Y.L.; Fang, Y.D.; Strathmann, T.J. Fate of per- and polyfluoroalkyl substances (PFAS) during hydrothermal liquefaction of municipal wastewater treatment sludge. Environ. Sci. Water Res. Technol. 2020, 6, 1388–1399. [Google Scholar] [CrossRef]
- Wu, B.R.; Hao, S.L.; Choi, Y.J.; Higgins, C.P.; Deeb, R.; Strathmann, T.J. Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ. Sci. Technol. Lett. 2019, 6, 630–636. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Li, X.Y.; Shih, K. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ. Sci. Technol. 2015, 49, 5672–5680. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.R.; Sáez, M.; Dolfing, J.; de Voogt, P. Biodegradation of perfluorinated compounds. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2008; Volume 196, pp. 53–71. [Google Scholar]
- Liu, J.; Mejia Avendano, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Li, L.Y.; Grace, J.R. Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities. Environ. Pollut. 2020, 259, 113835. [Google Scholar] [CrossRef]
- Sun, M.; Cui, J.N.; Guo, J.Y.; Zhai, Z.H.; Zuo, P.; Zhang, J.B. Fluorochemicals biodegradation as a potential source of trifluoroacetic acid (TFA) to the environment. Chemosphere 2020, 254, 126894. [Google Scholar] [CrossRef]
- Luo, Q.; Liang, S.; Huang, Q. Laccase induced degradation of perfluorooctanoic acid in a soil slurry. J. Hazard. Mater. 2018, 359, 241–247. [Google Scholar] [CrossRef]
- Sun, Q.B.; Zhao, C.Y.; Frankcombe, T.J.; Liu, H.; Liu, Y. Heterogeneous photocatalytic decomposition of per- and poly-fluoroalkyl substances: A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 523–547. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, W.; Luo, C.; Liu, T. Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system. Environ. Sci. Technol. 2016, 50, 10554–10561. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, S.; Jiang, X.; Qu, Y.; He, Y.; Liu, L.; Chai, Q.; Mumtaz, M.; Huang, J.; Cagnetta, G.; et al. Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): Oxidation with UV/persulfate or reduction with UV/sulfite? Environ. Sci. Technol. 2018, 52, 11728–11734. [Google Scholar] [CrossRef]
- Tenorio, R.; Liu, J.; Xiao, X.; Maizel, A.; Higgins, C.P.; Schaefer, C.E.; Strathmann, T.J. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment. Environ. Sci. Technol. 2020, 54, 6957–6967. [Google Scholar] [CrossRef]
- Tang, H.Q.; Xiang, Q.Q.; Lei, M.; Yan, J.C.; Zhu, L.H.; Zou, J. Efficient degradation of perfluorooctanoic acid by UV-Fenton process. Chem. Eng. J. 2012, 184, 156–162. [Google Scholar] [CrossRef]
- Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kiatagawa, H.; Arakawa, R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ. Sci. Technol. 2004, 38, 6118–6124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, P. Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst. Catal. Commun. 2009, 10, 1184–1187. [Google Scholar] [CrossRef]
- Zhao, B.; Lv, M.; Zhou, L. Photocatalytic degradation of perfluorooctanoic acid with beta-Ga2O3 in anoxic aqueous solution. J. Environ. Sci. 2012, 24, 774–780. [Google Scholar] [CrossRef]
- Sahu, S.P.; Qanbarzadeh, M.; Ateia, M.; Torkzadeh, H.; Maroli, A.S.; Cates, E.L. Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst. Environ. Sci. Technol. Lett. 2018, 5, 533–538. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. J. Hazard. Mater. 2011, 192, 1869–1875. [Google Scholar] [CrossRef]
- Hori, H.; Nagaoka, Y.; Yamamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, S.; Kutsuna, S.; Osaka, I.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ. Sci. Technol. 2006, 40, 1049–1054. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Sierra-Alvarez, R.; Somogyi, A.; Jacobsen, N.E.; Wysocki, V.H.; Field, J.A. Reductive defluorination of perfluorooctane sulfonate. Environ. Sci. Technol. 2008, 42, 3260–3264. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chen, Y.P.; Chen, M.J.; Kuo, J.; Lo, S.L. Reductive defluorination of perfluorooctanoic acid by titanium (III) citrate with vitamin B12 and copper nanoparticles. J. Hazard. Mater. 2017, 340, 336–343. [Google Scholar] [CrossRef]
- Liu, J.Y.; Van Hoomissen, D.J.; Liu, T.C.; Maizel, A.; Huo, X.C.; Fernandez, S.R.; Ren, C.X.; Xiao, X.; Fang, Y.D.; Schaefer, C.E.; et al. Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environ. Sci. Technol. Lett. 2018, 5, 289–294. [Google Scholar] [CrossRef]
- Zenobio, J.E.; Modiri-Gharehveran, M.; de Perre, C.; Vecitis, C.D.; Lee, L.S. Reductive transformation of perfluorooctanesulfonate by nNiFe(0)-activated carbon. J. Hazard. Mater. 2020, 397, 122782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ptacek, C.J.; Baldwin, R.J.; Cooper, J.M.; Blowes, D.W. Application of zero-valent iron coupled with biochar for removal of perfluoroalkyl carboxylic and sulfonic acids from water under ambient environmental conditions. Sci. Total Environ. 2020, 719, 137372. [Google Scholar] [CrossRef] [PubMed]
- Birke, V.; Mattik, J.; Runne, D. Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants. J. Mater. Sci. 2004, 39, 5111–5116. [Google Scholar] [CrossRef]
- Cagnetta, G.; Robertson, J.; Huang, J.; Zhang, K.; Yu, G. Mechanochemical destruction of halogenated organic pollutants: A critical review. J. Hazard. Mater. 2016, 313, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Cagnetta, G.; Huang, J.; Yu, G. A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale. Crit. Rev. Environ. Sci. Technol. 2018, 48, 723–771. [Google Scholar] [CrossRef]
- Tipikin, D.S.; Lebedev, Y.S.; Poluektov, O.G.; Schmidt, J. ESE-detected EPR of triplet radical pairs produced by mechano-chemical treatment of 2,6-di-t-butylquinone diazide mixed with 3,5-di-t-butylpyrocathechon. Chem. Phys. Lett. 1993, 215, 199–202. [Google Scholar] [CrossRef]
- Chemerisov, S.D.; Grinberg, O.Y.; Tipikin, D.S.; Lebedev, Y.S.; Kurreck, H.; Mobius, K. Mechanically induced radical pair formation in porphyrin quinone and related donor-acceptor mixtures—Unusual stability and zero-field splittings. Chem. Phys. Lett. 1994, 218, 353–361. [Google Scholar] [CrossRef]
- Tipikin, D.S.; Lebedev, Y.S.; Rieker, A. Mechanochemical generation of stable radical species. Oxidation of pyrocatechols. Chem. Phys. Lett. 1997, 272, 399–404. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lu, J.F.; Saito, F.; Baron, M. Mechanochemical solid-phase reaction between polyvinylidene fluoride and sodium hydroxide. J. Appl. Polym. Sci. 2001, 81, 2249–2252. [Google Scholar] [CrossRef]
- Lee, J.R.; Zhang, Q.W.; Saito, F. Mechanochemical synthesis of lanthanum oxyfluoride by grinding lanthanum oxide with poly (vinylidene fluoride). Ind. Eng. Chem. Res. 2001, 40, 4785–4788. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, Q.W.; Saito, F. Synthesis of nano-sized lanthanum oxyfluoride powders by mechanochemical processing. J. Alloy. Compd. 2003, 348, 214–219. [Google Scholar] [CrossRef]
- Qu, J.; He, X.; Zhang, Q.; Liu, X.; Saito, F. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides. Environ. Technol. 2017, 38, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Shintani, M.; Naito, Y.; Yamada, S.; Nomura, Y.; Zhou, S.; Nakashimada, Y.; Hosomi, M. Degradation of perfluorooctansulfonate (PFOS) and perfluorooctanoic acid (PFOA) by mechanochemical treatment. Kagaku Kogaku Ronbunshu 2008, 34, 539–544. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Yu, G.; Zhang, Q.; Deng, S.; Wang, B. Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environ. Sci. Technol. 2013, 47, 6471–6477. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Yang, Y.; Hui, Y.; Ge, Y.; Larssen, T.; Yu, G.; Deng, S.; Wang, B.; Harman, C. First report of a chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment. Environ. Sci. Technol. 2013, 47, 10163–10170. [Google Scholar] [CrossRef]
- Zhang, K.L.; Cao, Z.G.; Huang, J.; Deng, S.B.; Wang, B.; Yu, G. Mechanochemical destruction of chinese PFOS alternative F-53B. Chem. Eng. J. 2016, 286, 387–393. [Google Scholar] [CrossRef]
- Wang, N.; Liu, J.; Buck, R.C.; Korzeniowski, S.H.; Wolstenholme, B.W.; Folsom, P.W.; Sulecki, L.M. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 2011, 82, 853–858. [Google Scholar] [CrossRef]
- Lu, M.; Cagnetta, G.; Zhang, K.; Huang, J.; Yu, G. Mechanochemical mineralization of “very persistent” fluorocarbon surfactants 6:2 fluorotelomer sulfonate (6:2FTS) as an example. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Cagnetta, G.; Zhang, Q.W.; Huang, J.; Lu, M.N.; Wang, B.; Wang, Y.J.; Deng, S.B.; Yu, G. Mechanochemical destruction of perfluorinated pollutants and mechanosynthesis of lanthanum oxyfluoride: A waste-to-materials process. Chem. Eng. J. 2017, 316, 1078–1090. [Google Scholar] [CrossRef]
- Lv, H.Q.; Wang, N.; Zhu, L.H.; Zhou, Y.Q.; Li, W.J.; Tang, H.Q. Alumina-mediated mechanochemical method for simultaneously degrading perfluorooctanoic acid and synthesizing a polyfluoroalkene. Green Chem. 2018, 20, 2526–2533. [Google Scholar] [CrossRef]
- Biswas, S.; Pramanik, A.; Sarkar, P. Computational studies on the reactivity of alkyl halides over (Al2O3) n nanoclusters: An approach towards room temperature dehydrohalogenation. Nanoscale 2016, 8, 10205–10218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onodera, T.; Kawasaki, K.; Nakakawaji, T.; Higuchi, Y.; Ozawa, N.; Kurihara, K.; Kubo, M. Tribocatalytic reaction of polytetrafluoroethylene sliding on an aluminum surface. J. Phys. Chem. C 2015, 119, 15954–15962. [Google Scholar] [CrossRef]
- Ul’yanov, A.V.; Tataurova, O.G.; Popov, D.A.; Toporov, Y.P.; Malkin, A.I.; Buryak, A.K. Study of the products of the mechanochemical activation of teflon in a mixture with metals by chromatography-mass spectrometry and thermodesorption mass spectrometry. J. Anal. Chem. 2019, 74, 480–488. [Google Scholar] [CrossRef]
- Dombrowski, P.M.; Kakarla, P.; Caldicott, W.; Chin, Y.; Sadeghi, V.; Bogdan, D.; Barajas-Rodriguez, F.; Chiang, S.-Y. Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS. Remediat. J. 2018, 28, 135–150. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.T.; Sun, K.; Lin, C.Y.; Ma, J.; He, M.C.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X.T.; Qi, C.D.; Wang, D.L.; Lin, C.Y. Mechanochemical destruction of a chlorinated polyfluorinated ether sulfonate (F-53B, a PFOS alternative) assisted by sodium persulfate. RSC Adv. 2015, 5, 85785–85790. [Google Scholar] [CrossRef]
- Wang, N.; Lv, H.; Zhou, Y.; Zhu, L.; Hu, Y.; Majima, T.; Tang, H. Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate. Environ. Sci. Technol. 2019, 53, 8302–8313. [Google Scholar] [CrossRef]
- Deng, S.; Bao, Y.; Cagnetta, G.; Huang, J.; Yu, G. Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate (VI) and zero-valent iron. Environ. Pollut. 2020, 264, 114789. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Ji, D.; Mao, W.; Cui, Y.; Wang, Q.; Han, L.; Zhong, H.; Wei, Z.; Zhao, Y. Norgaard, K.; et al. Dry chemistry of ferrate (VI): A solvent-free mechanochemical way for versatile green oxidation. Angew. Chem. Int. Ed. 2018, 57, 10949–10953. [Google Scholar] [CrossRef]
- Zhao, J.F.; Liu, Y.Q.; Wang, Q.; Fu, Y.S.; Lu, X.H.; Bai, X.F. The self-catalysis of ferrate (VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: Kinetics, mechanism and transformation products. Sep. Purif. Technol. 2018, 192, 412–418. [Google Scholar] [CrossRef]
- Blotevogel, J.; Giraud, R.J.; Borch, T. Reductive defluorination of perfluorooctanoic acid by zero-valent iron and zinc: A DFT-based kinetic model. Chem. Eng. J. 2018, 335, 248–254. [Google Scholar] [CrossRef]
- Sansotera, M.; Persico, F.; Pirola, C.; Navarrini, W.; Di Michele, A.; Bianchi, C.L. Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions. Appl. Catal. B Environ. 2014, 148, 29–35. [Google Scholar] [CrossRef]
- Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C.A.; Arredondo, J.; Wang, M.; Senftle, T.P.; Westerhoff, P.; Wen, X.; et al. Efficient photocatalytic PFOA degradation over boron nitride. Environ. Sci. Technol. Lett. 2020, 7, 613–619. [Google Scholar] [CrossRef]
- Qiu, W.; Vakili, M.; Cagnetta, G.; Huang, J.; Yu, G. Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. Int. J. Biol. Macromol. 2020, 148, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Oliver, D.P.; Kookana, R.S. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 628, 110–120. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roesch, P.; Vogel, C.; Simon, F.-G. Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts. Int. J. Environ. Res. Public Health 2020, 17, 7242. https://doi.org/10.3390/ijerph17197242
Roesch P, Vogel C, Simon F-G. Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts. International Journal of Environmental Research and Public Health. 2020; 17(19):7242. https://doi.org/10.3390/ijerph17197242
Chicago/Turabian StyleRoesch, Philipp, Christian Vogel, and Franz-Georg Simon. 2020. "Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts" International Journal of Environmental Research and Public Health 17, no. 19: 7242. https://doi.org/10.3390/ijerph17197242
APA StyleRoesch, P., Vogel, C., & Simon, F. -G. (2020). Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts. International Journal of Environmental Research and Public Health, 17(19), 7242. https://doi.org/10.3390/ijerph17197242