Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework
Abstract
:1. Introduction
2. Methodology
2.1. Framework of Agent-Based Model
- The impacts of the community density on the evacuation process
- The impacts of the average flood risk tolerance threshold on the evacuation process
- The impacts of the percent of the vulnerable resident agents on the evacuation process
- The impacts of the community mutual aid mechanism on the evacuation process
2.2. Construction of the Agent-Based Model
2.2.1. Flood Risk Warning
2.2.2. Resident Agents and Behavior Rules
Resident Agent Attributes
Resident Agents’ Flood Risk Perception
Resident Agents’ Evacuation Decision
Resident Agents’ Mutual Aid Process
2.2.3. Community Residents Committee Staff Agents and Behavior Rules
2.2.4. Road Network and Traffic Rules
2.2.5. Model Assumptions and Outputs
2.3. Synthetic Community and Scenario Design
2.3.1. Synthetic Community Design
2.3.2. Scenario Design
3. Results and Discussion
3.1. Impacts of Community Density on the Evacuation Process
3.2. Impacts of Flood Risk Tolerance Threshold of Resident Agents on the Evacuation Process
3.3. Impacts of Vulnerable Residents on the Evacuation Process
3.4. Impacts of Community Mutual Aid Mechanism on the Evacuation Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Z.Q.; Wang, H.M.; Huang, J.; Kang, J.L.; Han, D.W. Analysis of the public flood risk perception in a flood-prone city: The case of jingdezhen city in china. Water 2018, 10, 1577. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, C.R.; Wen, J.H.; Li, W.D.; Liu, R.; Xu, H. Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters. Int. J. Geogr. Inf. Sci. 2018, 32, 1884–1910. [Google Scholar] [CrossRef]
- Cutter, S.L. The vulnerability of science and the science of vulnerability. Ann. Assoc. Am. Geogr. 2003, 93, 1–12. [Google Scholar] [CrossRef]
- Turner, B.L., II; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, H.; Mohd Yusof, M.J.; Mohammad Ali, T.A. An overview to flood vulnerability assessment methods. Sustain. Water Resour. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Yu, J.; Wen, J.H.; Yi, M.; Chen, Y. Emergency evacuation simulation and management optimization in urban residential communities. Sustainability 2019, 11, 795. [Google Scholar] [CrossRef] [Green Version]
- Adelson-Velsky, G.M.; Levner, E. Project scheduling in and-or graphs: A generalization of dijkstra’s algorithm. Math. Oper. Res. 2002, 27, 504–517. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, S.; Kristensen, A.S. Application of integrated model of evacuation psychology in an agent-based simulation. In Proceedings of the 11th International Conference on Computer Modeling and Simulation (ICCMS 2019) and 8th International Conference on Intelligent Computing and Applications (ICICA 2019), Melbourne, Australia, 16–19 January 2019; pp. 70–74. [Google Scholar] [CrossRef]
- Toledo, T.; Marom, I.; Grimberg, E.; Bekhor, S. Analysis of evacuation behavior in a wildfire event. Int. J. Disaster Risk Reduct. 2018, 31, 1366–1373. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Liu, G.P.; Li, L.; Moore, P.; Hu, B. A grouping method based on grid density and relationship for crowd evacuation simulation. Physica A 2017, 473, 319–336. [Google Scholar] [CrossRef]
- Morss, R.E.; Demuth, J.L.; Lazo, J.K.; Dickinson, K.; Lazrus, H.; Morrow, B.H. Understanding public hurricane evacuation decisions and responses to forecast and warning messages. Weather Forecast. 2016, 31, 395–417. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Isobe, M.; Adachi, T.; Nagatani, T. Experiment and simulation of pedestrian counter flow. Physica A 2004, 336, 638–650. [Google Scholar] [CrossRef]
- Liu, X.F.; Lim, S.S. Integration of spatial analysis and an agent-based model into evacuation management for shelter assignment and routing. J. Spat. Sci. 2016, 61, 283–298. [Google Scholar] [CrossRef]
- Zhu, J.X.; Dai, Q.; Deng, Y.H.; Zhang, A.R.; Zhang, Y.Z.; Zhang, S.L. Indirect damage of urban flooding: Investigation of flood-induced traffic congestion using dynamic modeling. Water 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- Macal, C.M. Everything you need to know about agent-based modelling and simulation. J. Simul. 2016, 10, 144–156. [Google Scholar] [CrossRef]
- Zou, Q.; Fernandes, D.S.; Chen, S. Agent-based evacuation simulation from subway train and platform. J. Trans. Saf. Secur. 2019, 1–22. [Google Scholar] [CrossRef]
- D’Orazio, M.; Spalazzi, L.; Quagliarini, E.; Bernardini, G. Agent-based model for earthquake pedestrians’ evacuation in urban outdoor scenarios: Behavioural patterns definition and evacuation paths choice. Saf. Sci. 2014, 62, 450–465. [Google Scholar] [CrossRef]
- Liang, W.; Lam, N.S.N.; Qin, X.J.; Ju, W.X. A two-level agent-based model for hurricane evacuation in new orleans. J. Homel. Secur. Emerg. 2015, 12, 407–435. [Google Scholar] [CrossRef]
- Mostafizi, A.; Wang, H.Z.; Cox, D.; Dong, S.J. An agent-based vertical evacuation model for a near-field tsunami: Choice behavior, logical shelter locations, and life safety. Int. J. Disaster Risk Reduct. 2019, 34, 467–479. [Google Scholar] [CrossRef]
- Wijerathne, L.; Petprakob, W.; Aguilar, L.; Hori, M.; Ichimura, T. Scalable hpc enhanced agent based system for simulating mixed mode evacuation of large urban areas. Transp. Res. Proc. 2018, 34, 275–282. [Google Scholar] [CrossRef]
- Liu, X.F.; Lim, S. An agent-based evacuation model for the 2011 brisbane city-scale riverine flood. Nat. Hazards 2018, 94, 53–70. [Google Scholar] [CrossRef]
- Poulos, A.; Tocornal, F.; de la Llera, J.C.; Mitrani-Reiser, J. Validation of an agent-based building evacuation model with a school drill. Transp. Res. C Emerg. Technol. 2018, 97, 82–95. [Google Scholar] [CrossRef]
- Marzouk, M.; Mohamed, B. Integrated agent-based simulation and multi-criteria decision making approach for buildings evacuation evaluation. Saf. Sci. 2019, 112, 57–65. [Google Scholar] [CrossRef]
- Karbovskii, V.; Voloshin, D.; Karsakov, A.; Bezgodov, A.; Zagarskikh, A. Multiscale agent-based simulation in large city areas: Emergency evacuation use case. Procedia Comput. Sci. 2015, 51, 2367–2376. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Cai, X.; Sun, Z.; Minsker, B. Exploring the role of social media and individual behaviors in flood evacuation processes: An agent-based modeling approach. Water Resour. Res. 2017, 53, 9164–9180. [Google Scholar] [CrossRef] [Green Version]
- Cimellaro, G.P.; Mahin, S.; Domaneschi, M. Integrating a human behavior model within an agent-based approach for blasting evacuation. Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Rivera, S.; Cai, X.; Myers, L.; Ernest, A.; Minsker, B. Impacts of human behavioral heterogeneity on the benefits of probabilistic flood warnings: An agent-based modeling framework. J. Am. Water Resour. Assoc. 2017, 53, 316–332. [Google Scholar] [CrossRef]
- Tonn, G.L.; Guikema, S.D. An agent-based model of evolving community flood risk. Risk Anal. 2018, 38, 1258–1278. [Google Scholar] [CrossRef]
- Reynaud, A.; Aubert, C.; Nguyen, M.-H. Living with floods: Protective behaviours and risk perception of vietnamese households. Geneva Pap. Risk Insur. Issues Pract. 2013, 38, 547–579. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, J.; Srikant, R. Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate. Automatica 2014, 50, 3209–3215. [Google Scholar] [CrossRef]
- Boeing, G. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Cova, T.J.; Johnson, J.P. A network flow model for lane-based evacuation routing. Transp. Res. Part A Policy Pract. 2003, 37, 579–604. [Google Scholar] [CrossRef]
- Zhang, B.; Ukkusuri, S.V.; Chan, W.K. Agent-based modeling for household level hurricane evacuation. In Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA, 13–16 December 2009; pp. 2778–2784. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I 1992, 2, 2221–2229. [Google Scholar] [CrossRef]
- Liu, S.B.; Yang, L.Z.; Fang, T.Y.; Li, J. Evacuation from a classroom considering the occupant density around exits. Physica A 2009, 388, 1921–1928. [Google Scholar] [CrossRef]
- Stepanov, A.; Smith, J.M. Multi-objective evacuation routing in transportation networks. Eur. J. Oper. Res. 2009, 198, 435–446. [Google Scholar] [CrossRef]
- Ji, J.W.; Lu, L.G.; Jin, Z.H.; Wei, S.P.; Ni, L. A cellular automata model for high-density crowd evacuation using triangle grids. Physica A 2018, 509, 1034–1045. [Google Scholar] [CrossRef]
- Lo, S.; Fang, Z.; Lin, P.; Zhi, G. An evacuation model: The sgem package. Fire Saf. J. 2004, 39, 169–190. [Google Scholar] [CrossRef]
- Bassett, D.S.; Alderson, D.L.; Carlson, J.M. Collective decision dynamics in the presence of external drivers. Phys. Rev. E. 2012, 86, 036105. [Google Scholar] [CrossRef] [Green Version]
- McCullen, N.J.; Rucklidge, A.M.; Bale, C.S.E.; Foxon, T.J.; Gale, W.F. Multiparameter models of innovation diffusion on complex networks. SIAM J. Appl. Dyn. Syst. 2013, 12, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.C.; Galam, S. Building up of individual inflexibility in opinion dynamics. Phys Rev E 2013, 87, 042807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the monte carlo method is so important today. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 386–392. [Google Scholar] [CrossRef]
- Rothenberg, T.J.; Fisher, F.M.; Tilanus, C.B. A note on estimation from a cauchy sample. J. Am. Stat. Assoc. 1964, 59, 460–463. [Google Scholar] [CrossRef]
- Railsback, S.; Ayllón, D.; Berger, U.; Grimm, V.; Lytinen, S.; Sheppard, C.; Thiele, J. Improving execution speed of models implemented in netlogo. J. Artif. Soc. Soc. Simul. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
Category | Variables | Description |
---|---|---|
Physical | Unique identification number of each agent | |
ES | Evacuation status of agents | |
GL | Geographical location of agents in the community | |
CGN | Community grid number where agents live | |
Vmax | Agent’s max movement speed during the evacuation | |
CAT | Agent’s categories (non-vulnerable resident and vulnerable resident) | |
Psychological | RT | Agent’s flood risk tolerance threshold |
FRP | Agent’s flood risk perception |
Category | Speed | Interaction Rules | Representative |
---|---|---|---|
Non-vulnerable resident agent | fast |
| Young adults |
Vulnerable resident agent | slow |
| Children, elderly, people with mobility problems |
Parameters | ||||
---|---|---|---|---|
Values | 1 | 0.5 | 0.5 | 0.5(0.1) a |
Scenario | |||||
---|---|---|---|---|---|
Scenario 1 | 10:10:200 a | 0.7(0.05) b | 0.1 | false | 0.0 |
Scenario 2 | 10:20:200 | 0.5:0.1:0.9 | 0.1 | false | 0.0 |
Scenario 3 | 10:20:200 | 0.7(0.05) | 0.1:0.1:0.5 | false | 0.0 |
Scenario 4 | 10:20:200 | 0.7(0.05) | 0.1:0.1:0.5 | true | 0.1:0.1:1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, J.; Wang, H.; Kang, J.; Cao, W. Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework. Int. J. Environ. Res. Public Health 2020, 17, 560. https://doi.org/10.3390/ijerph17020560
Wang Z, Huang J, Wang H, Kang J, Cao W. Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework. International Journal of Environmental Research and Public Health. 2020; 17(2):560. https://doi.org/10.3390/ijerph17020560
Chicago/Turabian StyleWang, Zhiqiang, Jing Huang, Huimin Wang, Jinle Kang, and Weiwei Cao. 2020. "Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework" International Journal of Environmental Research and Public Health 17, no. 2: 560. https://doi.org/10.3390/ijerph17020560
APA StyleWang, Z., Huang, J., Wang, H., Kang, J., & Cao, W. (2020). Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework. International Journal of Environmental Research and Public Health, 17(2), 560. https://doi.org/10.3390/ijerph17020560