Night-Time Shift Work and Related Stress Responses: A Study on Security Guards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Saliva Samples Collection, Cortisol Determination, and Systolic/Diastolic Evaluation
2.2. Statistical Analysis
3. Results
3.1. Cortisol Levels
3.2. Systolic and Diastolic Blood Pressure
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sapolsky, R.M. Why Zebras Don’t Get Ulcers: A Guide to Stress, Stress-Related Diseases, and Coping; WH Freeman and Co.: New York, NY, USA, 1998. [Google Scholar]
- Chrousos, G. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef]
- McEwen, B. Stress and health: Relevance to persian gulf veterans? In Proceedings of the International Society for Traumatic Stress Studies Annual Meeting 1998, Washington, DC, USA, 21–23 November 1998. [Google Scholar]
- Moreno-Smith, M.; Lutgendorf, S.K.; Sood, A.K. Impact of stress on cancer metastasis. Future Oncol. 2010, 6, 1863–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandola, T.; Brunner, E.; Marmot, M. Chronic stress at work and the metabolic syndrome: Prospective study. BMJ 2006, 332, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansfeld, S.A.; Shipley, M.J.; Head, J.; Fuhrer, R. Repeated job strain and the risk of depression: Longitudinal analyses from the Whitehall II study. Am. J. Public Health 2012, 102, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Crowe, M.; Andel, R.; Pedersen, N.L.; Gatz, M. Do work-related stress and reactivity to stress predict dementia more than 30 years later? Alzheimer Dis. Assoc. Disord. 2007, 21, 205–209. [Google Scholar] [CrossRef]
- Cannizzaro, E.; Ramaci, T.; Cirrincione, L.; Plescia, F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. Int. J. Environ. Res. Public Health 2019, 16, 4031. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, A.; Martines, F.; Cannizzaro, C.; Lavanco, G.; Brancato, A.; Carollo, G.; Plescia, F.; Salvago, P.; Cannizzaro, E.; Mucia, M.; et al. Role of Cannabinoids In The Treatment of Tinnitus. Acta Medica Mediterr. 2016, 4, 903–909. [Google Scholar]
- Mucia, M.; Salvago, P.; Brancato, A.; Cannizzaro, C.; Cannizzaro, E.; Gallina, S.; Ferrara, S.; Mulè, A.; Plescia, F.; Sireci, F.; et al. Upper respiratory tract infections in children: From case history to managemen. Acta Medica Mediterr. 2015, 31, 419–424. [Google Scholar]
- Plescia, F.; Cannizzaro, C.; Brancato, A.; Martines, F.; Di Naro, A.; Mucia, M. Acetaldehyde effects in the brain. Acta Medica Mediterr. 2015, 31, 813–817. [Google Scholar]
- Fernández-Prada, M.; González-Cabrera, J.; Iribar-Ibabe, C.; Peinado, J.M. Psychosocial risks and stress as predictors of burnout in junior doctors performing emergency guards. Gac. Medica Mexico 2017, 153, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Cannizzaro, E.; Plescia, F.; Cirrincione, L.; Lo Pinto, E.; Plescia, F. Sport for job. Differences in cortisol levels in a water polo team at different times of workout. EMBJ 2018, 13, 181–184. [Google Scholar]
- Crowe, M.; Andel, R.; Pedersen, N.L.; Fratiglioni, L.; Gatz, M. Personality and risk of cognitive impairment 25 years later. Psychol. Aging 2006, 21, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Andel, R.; Crowe, M.; Hahn, E.A.; Mortimer, J.A.; Pedersen, N.L.; Fratiglioni, L.; Johansson, B.; Gatz, M. Work-related stress may increase the risk of vascular dementia. J. Am. Geriatr. Soc. 2012, 60, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theorell, T.; Karasek, R.A.; Eneroth, P. Job strain variations in relation to plasma testosterone fluctuations in working men—A longitudinal study. J. Intern. Med. 1990, 227, 31–36. [Google Scholar] [CrossRef]
- Ramaci, T.; Pellerone, M.; Ledda, C.; Rapisarda, V. Health promotion, psychological distress, and disease prevention in the workplace: A cross-sectional study of Italian adults. Risk Manag. Healthc. Policy 2017, 10, 167–175. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [Green Version]
- Ebner, K.; Saria, A.; Singewald, N. Substance P in the medial amygdala: Emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc. Natl. Acad. Sci. USA 2004, 101, 4280–4285. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, J. Nerve growth factor levels in mouse serum: Variations due to stress. Neurochem. Res. 1987, 12, 393–397. [Google Scholar] [CrossRef]
- Miller, D.B.; O’Callaghan, J.P. Neuroendocrine aspects of the response to stress. Metabolism 2002, 51, 5–10. [Google Scholar] [CrossRef]
- Taylor, J.H.; Mustoe, A.C.; French, J.A. Behavioral responses to social separation stressor change across development and are dynamically related to HPA activity in marmosets. Am. J. Primatol. 2014, 76, 239–248. [Google Scholar] [CrossRef] [Green Version]
- French, J.A.; Smith, A.S.; Gleason, A.M.; Birnie, A.K.; Mustoe, A.; Korgan, A. Stress reactivity in young marmosets (Callithrix geoffroyi): Ontogeny, stability, and lack of concordance among co-twins. Horm. Behav. 2012, 61, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecoraro, N.; Dallman, M.F.; Warne, J.P.; Ginsberg, A.B.; Laugero, K.D.; la Fleur, S.E.; Houshyar, H.; Gomez, F.; Bhargava, A.; Akana, S.F. From Malthus to motive: How the HPA axis engineers the phenotype, yoking needs to wants. Prog. Neurobiol. 2006, 79, 247–340. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Cutler, N.; Feighner, J.; Shrivastava, R.; Carman, J.; Sramek, J.J.; Reines, S.A.; Liu, G.; Snavely, D.; Wyatt-Knowles, E.; et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998, 28, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, J. Aggressive behavior in adult male mice elevated serum nerve growth factor levels. Am. J. Physiol. 1986, 250, E386–E392. [Google Scholar]
- Gold, S.M.; Dziobek, I.; Rogers, K.; Bayoumy, A.; McHugh, P.F.; Convit, A. Hypertension and Hypothalamic-Pituiraty-Adrenal Axis Hyperactivity Affect Frontal Lobe Integrity. JCEM 2005, 90, 3262–3267. [Google Scholar]
- Rosmond, R.; Bjorntorp, P. The hypothalamic–pituitary–adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J. Intern. Med. 2001, 247, 188–197. [Google Scholar] [CrossRef]
- McEwen, B.S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17180–17185. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S. The ever-changing brain: Cellular and molecular mechanisms for the effects of stressful experiences. Dev. Neurobiol. 2012, 72, 878–890. [Google Scholar] [CrossRef] [Green Version]
- Cannizzaro, E.; Cannizzaro, C.; Martorana, D.; Moscadini, S.; Coco, D.L. Effects of shift work on cardiovascular activity, serum cortisol and white blood cell count in a group of Italian fishermen. EMBJ 2012, 23, 109–113. [Google Scholar]
- McEwen, B. Stress and Individual. Mechanisms Leading to Diserase. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Matheson, A.; O’Brien, L.; Reid, J.A. The impact of shiftwork on health: A literature review. J. Clin. Nurs. 2014, 23, 3309–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Jacobs, D.I.; Hansen, J.; Fu, A.; Stevens, R.G.; Zhu, Y. Aberrant methylation of miR-34b is associated with long-term shiftwork: A potential mechanism for increased breast cancer susceptibility. Cancer Causes Control 2015, 26, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G.; Zhu, Y. Electric light, particularly at night, disrupts human circadian rhythmicity: Is that a problem? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 1667. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 2014, 64, 207. [Google Scholar] [CrossRef]
- Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Altieri, A.; Benbrahim-Tallaa, L.; Cogliano, V. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007, 8, 1065–1066. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, C.; Wang, M.; Mo, F.; Du, W.; Ma, X. Night Shift Work Increases the Risks of Multiple Primary Cancers in Women: A Systematic Review and Meta-analysis of 61 Articles. Cancer Epidemiol. Biomark. Prev. 2018, 27, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, C.; Hellhammer, D.H. Noise and Stress—Salivary Cortisol as a Non-Invasive Measure of Allostatic Load. Noise Health 1999, 1, 57–66. [Google Scholar]
- Šušoliaková, O.; Šmejkalová, J.; Bičíková, M.; Hodačová, L.; Málková, A.; Fiala, Z. Assessment of work-related stress by using salivary cortisol level examination among early morning shift workers. Cent. Eur. J. Public Health 2018, 26, 92–97. [Google Scholar]
- Garcez, A.; Weiderpass, E.; Canuto, R.; Lecke, S.B.; Spritzer, P.M.; Pattussi, M.P.; Olinto, M.T.A. Salivary Cortisol, Perceived Stress, and Metabolic Syndrome: A Matched Case-Control Study in Female Shift Workers. Horm. Metab. Res. 2017, 49, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Lac, G.; Chamoux, A. Biological and psychological responses to two rapid shiftwork schedules. Ergonomics 2004, 47, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Bigert, C.; Bluhm, G.; Theorell, T. Saliva cortisol—A new approach in noise research to study stress effects. Int. J. Hyg. Environ. Health 2005, 208, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Simons, S.S.; Cillessen, A.H.; de Weerth, C. Associations between circadian and stress response cortisol in children. Stress 2017, 20, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weibel, L.; Spiegel, K.; Follenius, M.; Ehrhart, J.; Brandenberger, G. Internal dissociation of the circadian markers of the cortisol rhythm in night workers. Am. J. Physiol. 1996, 270 Pt 1, E608–E613. [Google Scholar] [CrossRef]
- Marchand, A.; Juster, R.P.; Durand, P.; Lupien, S.J. Work stress models and diurnal cortisol variations: The SALVEO study. J. Occup. Health Psychol. 2015, 21, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Kirschbarum, C.; Hellhammer, D.H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology 1994, 19, 313–333. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Motoshima, H.; Uchida, K. Hypothalamic-pituitary-adrenal axis differentially responses to morning and evening psychological stress in healthy subjects. Neuropsychopharmacology 2019, 39, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; Di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The role of deep breathing on stress. Neurol. Sci. 2017, 38, 451–458. [Google Scholar] [CrossRef]
- Ballacchino, A.; Salvago, P.; Cannizzaro, E.; Costanzo, R.; Di Marzo, M.; Ferrara, S.; La Mattina, E.; Messina, G.; Mucia, M.; Mulè, A.; et al. Association Between Sleep-Disordered Breathing And Hearing Disorders: Clinical Observation In Sicilian Patients. Acta Med. Mediterr. 2015, 31, 607–614. [Google Scholar]
- Hirotsu, C.; Tufik, S.; Andersen, M.L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015, 8, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Manzella, N.; Bracci, M.; Strafella, E.; Staffolani, S.; Ciarapica, V.; Copertaro, A.; Rapisarda, V.; Ledda, C.; Amati, M.; Valentino, M.; et al. Circadian modulation of 8-oxoguanine DNA damage repair. Sci. Rep. 2015, 5, 13752. [Google Scholar] [CrossRef] [Green Version]
- Ledda, C.; Cinà, D.; Matera, S.; Mucci, N.; Bracci, M.; Rapisarda, V. High HOMA-IR Index in Healthcare Shift Workers. Medicina 2019, 55, 186. [Google Scholar] [CrossRef] [Green Version]
- Nader, N.; Chrousos, G.P.; Kino, T. Interactions of the circadian CLOCK systemand the HPA axis. Trends Endocrinol. Metab. 2010, 21, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Palazzo Adriano, M.; Lo Cascio, N.; Picciotto, D.; Provenzano, G.; Carollo, A.; Notarbartolo, M.; Cannizzaro, E. Acute effects of daily workshifts on circadian rythm of workers of a power-station: Cardiovascular activity, blood cortisol levels, leukocytes and oral temperature. Acta Medica Mediterr. 2000, 16, 31–35. [Google Scholar]
- IARC Monographs Vol 124 Group. Carcinogenicity of night shift work. Lancet Oncol. 2019, 20, 1058–1059. [Google Scholar] [CrossRef]
Systolic Blood Pressure | Diastolic Blood Pressure | ||||||
---|---|---|---|---|---|---|---|
Time 0 | Time 0 | ||||||
value | q | p-value | value | q | p-value | ||
DW | 119 ± 9.113 | 1.743 | p > 0.05 vs. NWM | DW | 83 ± 4.115 | 1.395 | p > 0.05 vs. NWM |
NWM | 116 ± 12.77 | 0.3152 | p > 0.05 vs. NWO | NWM | 81 ± 6.084 | 2.596 | p > 0.05 vs. NWO |
NWO | 120 ± 13.39 | 1.427 | p > 0.05 vs. NWO | NWO | 80 ± 7.25 | 1.201 | p > 0.05 vs. NWO |
Time 1 | Time 1 | ||||||
value | q | p-value | value | q | p-value | ||
DW | 114 ± 8.715 | 8.642 | p < 0.001 vs. NWM | DW | 74 ± 5.792 | 8.085 | p < 0.001 vs. NWM |
NWM | 102 ± 7.90 | 11.67 | p < 0.001 vs. NWO | NWM | 66 ± 5.470 | 9.224 | p < 0.001 vs. NWO |
NWO | 97 ± 7.10 | 3.026 | p > 0.05 vs. NWO | NWO | 64 ± 6.584 | 1.139 | p > 0.05 vs. NWO |
Time 2 | Time 2 | ||||||
value | q | p-value | value | q | p-value | ||
DW | 120 ± 5.107 | 1.846 | p > 0.05 vs. NWM | DW | 80 ± 15.26 | 2.16 | p > 0.05 vs. NWM |
NWM | 117 ± 13.08 | 2.242 | p > 0.05 vs. NWO | NWM | 75 ± 10.81 | 0.2244 | p > 0.05 vs. NWO |
NWO | 118 ± 5.949 | 0.3954 | p > 0.05 vs. NWO | NWO | 79 ± 9.01 | 1.936 | p > 0.05 vs. NWO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannizzaro, E.; Cirrincione, L.; Mazzucco, W.; Scorciapino, A.; Catalano, C.; Ramaci, T.; Ledda, C.; Plescia, F. Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. Int. J. Environ. Res. Public Health 2020, 17, 562. https://doi.org/10.3390/ijerph17020562
Cannizzaro E, Cirrincione L, Mazzucco W, Scorciapino A, Catalano C, Ramaci T, Ledda C, Plescia F. Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. International Journal of Environmental Research and Public Health. 2020; 17(2):562. https://doi.org/10.3390/ijerph17020562
Chicago/Turabian StyleCannizzaro, Emanuele, Luigi Cirrincione, Walter Mazzucco, Alessandro Scorciapino, Cesare Catalano, Tiziana Ramaci, Caterina Ledda, and Fulvio Plescia. 2020. "Night-Time Shift Work and Related Stress Responses: A Study on Security Guards" International Journal of Environmental Research and Public Health 17, no. 2: 562. https://doi.org/10.3390/ijerph17020562
APA StyleCannizzaro, E., Cirrincione, L., Mazzucco, W., Scorciapino, A., Catalano, C., Ramaci, T., Ledda, C., & Plescia, F. (2020). Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. International Journal of Environmental Research and Public Health, 17(2), 562. https://doi.org/10.3390/ijerph17020562