Characteristics and Distribution of Organic Phosphorus Fractions in the Surface Sediments of the Inflow Rivers around Hongze Lake, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Analysis
2.3. Sequential Fractionation of Sediment Po
2.4. Statistical Analyses
3. Result and Discussion
3.1. Sediment Characteristics
3.2. The Characteristics and Distribution of Phosphorus Fraction in Sediments
3.2.1. TP, Pi, Po Fractionations in Sediments
3.2.2. Po Fractionation in Sediments
3.2.3. Relationships between Po Fractions and Physiochemical Features
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Yuan, X.; Zhou, R.; Wan, J.; Xu, J. Distribution and environmental significance of phosphorus forms in riparian soils and river sediments of Jianxi Basin, Fujian province. Pol. J. Environ. Stud. 2017, 5, 2331–2341. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardol, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L. Decoupling of soil nutrient cycles as a function of aridity in global dry lands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, B.; Li, J.; Zhang, W.; Di, Z.; Jin, X. Characteristics of phosphorus components in the sediments of main rivers into the Bohai Sea Shan Bao qinga. Ecol. Eng. 2016, 97, 426–433. [Google Scholar] [CrossRef]
- Golterman, H.L. Fractionation and bioavailability of phosphates in lacustrine sediments: A review. Limnetica 2001, 20, 15–29. [Google Scholar]
- Xie, L.Q.; Xie, P.; Tang, H.J. Enhancement of dissolved phosphorus release from sediment in a hyper-eutrophic, subtropical Chinese lake. Environ. Pollut. 2003, 122, 391–399. [Google Scholar] [CrossRef]
- Doig, L.E.; North, R.L.; Hudson, J.J.; Hewlett, C.; Lindenschmidt, K.E.; Liber, K. Phosphorus release from sediments in a river-valley reservoir in the northern Great Plains of North America. Hydrobiologia 2007, 787, 323–331. [Google Scholar] [CrossRef]
- Han, L.; Huang, S.L.; Stanley, C.D.; Osbornet, Z. Phosphorus Fractionation in Core Sediments from Haihe River Mainstream, China. Soil Sediment Contam. 2011, 20, 30–41. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tian, Y.L.; Cui, S.B.; Zhang, L.Y.; Zhong, X.; Xiong, Y.W. Influence of macrophytes on phosphorus fractionation in surface sediments in a constructed wetland: Insight from sediment compositions. Ecol. Eng. 2016, 97, 400–412. [Google Scholar] [CrossRef]
- Vicente, M.A.F.; Melo, G.V.; Neto, J.A.B.; Oliveira, A.S. Phosphorus fractionation distribution in Guapimirimestuary: SE Brazil. Springer Plus 2016, 5, 1406–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Joshi, S.R.; Hou, G.J.; Burdige, D.J.; Sparks, D.L.; Jaisi, D.P. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 2015, 49, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Zhang, Y.; Li, H.L.; Morrison, R.J. Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology 2013, 14, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Worsfold, P.J.; Monbet, P.; Tappin, A.D.; Fitzsimons, M.F.; Stiles, D.A.; McKelvie, I.D. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review. Anal. Chim. Acta 2008, 624, 37–58. [Google Scholar] [CrossRef]
- Liu, K.; Zhaokui, N.; Shengrui, W.; Caiying, N. Distribution characteristics of phosphorus in sediments at different altitudes of Poyang Lake. China Environ. Sci. 2015, 35, 856–861. [Google Scholar]
- Feng, W.; Zhu, R.Y.; Wu, F.; Liu, S.; Zhang, C. Optimization of Extraction and Parameters for 31P-NMR Analysis of Organic Phosphorus Extracted from Aquatic Plants and Algae. China Environ. Sci. 2016, 36, 562–568. [Google Scholar]
- Dong, D.P.; Zhang, T.X.; Zhang, D.Y. Characteristics of organic phosphorus fractions in the sediments of the black water aggregation in Lake Taihu. Environ. Sci. 2016, 37, 4194–4202. [Google Scholar]
- Xiaolu, L.; Minli, G.; Xiaodi, D. Distribution of organic phosphorus species in sediment profiles of shallow lakes and its effect on photo-release of phosphate during sediment. Environ. Int. 2019, 130, 104916–104929. [Google Scholar]
- Wenjin, S. Research Advance in Soil Organic Phosphorus. J. Anhui Agric. Sci. 2014, 42, 11697–11701. [Google Scholar]
- Zengfu, C.; Hongman, W.; Yulai, W. Distribution Patterns of Different Organic-phosphorus Fractions in the Surface Sediment from the Nanfei River. Anhui Agric. Sci. 2018, 46, 81–84. [Google Scholar]
- Bowman, R.A.; Cole, C.V. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci. 1978, 125, 95–100. [Google Scholar] [CrossRef]
- Linjiao, S.; Jiyu, Z.; Yu, S. Forms and Analysis Methods of Phosphorus in Sediments. Guangzhou Chem. Ind. 2018, 46, 31–32. [Google Scholar]
- Bin, Y.; Ting, W.; Kun, W.; Xia, J. A Modified Sequential Extraction Method for the Determination of Phosphorus Fraction in Sediment. Environ. Sci. Technol. 2017, 40, 90–94. [Google Scholar]
- Lu, C.W.; He, J.; Zhou, B.; Vogt, R.D.; Guan, R.; Wang, W.Y.; Zuo, L.; Yan, D.H. Distribution characteristics of organic phosphorus in sediments from Lake Hulun China. Environ. Sci. Process. Impacts 2015, 17, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Yuehua, F.; Zhang, Y. Research Progress on the Fractionation of Soil Organic Phosphorus. J. Hunan Agric. Univ. (Nat. Sci.) 2002, 28, 259–264. [Google Scholar]
- James, E.; Elema, B.A. Phosphorus cycle: A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar]
- Liu, J.G.; Raven, P.H. China’s environmental challenges and implications for the world. Crit. Rev. Environ. Sci. Technol. 2010, 40, 823–851. [Google Scholar] [CrossRef]
- Na, L.; Jiaqian, N.; Guowen, L.; Ye, L. Analysis of eutrophication status and regional differences of typical lakes in China. Acta Hydrobiol. Sin. 2018, 42, 35–47. [Google Scholar]
- Feng, W.; Jinyan, Z. Analysis of eutrophication status and regional differences of typical lakes in China. Ecol. Environ. Sci. 2012, 21, 94–100. [Google Scholar]
- Hui, Y.; Wenbin, Z.; Shaoyong, L. Spatial Distribution Characteristics of Surface Sediments Nutrients in Lake Hongze and Their Pollution Status Evaluation. Environ. Sci. 2010, 319, 961–968. [Google Scholar]
- Enguo, C. On the hydrological characteristics of Hongze Lake. J. Hydrol. 2001, 21, 56–59. [Google Scholar]
- Chouyyok, W.; Wiacek, R.J.; Pattamakomsan, K.; Sangvanich, T.; Grudzien, R.M.; Fryxell, G.E. Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ. Sci. Technol. 2010, 44, 3073–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.L.; Ni, Z.K.; Wang, S.R. Organic phosphorus forms in sediments and their relationship with the change of water level in Poyang Lake. Acta Sci. Circumstantiae 2016, 36, 3607–3614. [Google Scholar]
- Liu, C.; Zhu, H.W.; Wang, L.Y. Comparative study on the geochemical characteristics of phosphorus in sediments from Lake Dianchi and Hongfeng. Acta Sci. Circumstantiae 2013, 33, 1073–1079. [Google Scholar]
- Xuguang, G.; Guoxiang, W. Investigation of the ecological environmental problems and research on improving measures in the Hongze Lake. J. Anhui Agric. Sci. 2007, 35, 5537–5539. [Google Scholar]
- Claveau-Mallet, D.; Wallace, S.; Comeau, Y. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters. Environ. Sci. Technol. 2012, 46, 1465–1470. [Google Scholar] [CrossRef]
- Wennan, Y.; Gongchen, J.; Zhaoqun, W.; Shuhai, Z.; Hui, H. Phosphorus adsorption characteristics of surface sediments in different lake areas of Hongze Lake. Acta Geogr. Sin. 2012, 67, 985–991. [Google Scholar]
- Wenbin, Z. Study on the Distribution, Evaluation and Evolution of Nutrients and Heavy Metals in Hongze Lake Sediments. Master’s Thesis, Jilin Jianzhu University, Jinlin, China, 2010. [Google Scholar]
- Lu, R.K. Methods of Soil Agricultural Chemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Kim, H.T. Soil Sampling, Preparation and Analysis; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Shengrui, W. Sediment-Water Interface Process of Lakes Theories and Methods; Scientific Press: Beijing, China, 2014. [Google Scholar]
- Rowland, A.P.; Haygarth, P.M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 1997, 26, 410–415. [Google Scholar] [CrossRef]
- Rukun, L. Agrochemical Analysis of Soil; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Ivanoff, D.B.; Reddy, K.R.; Robinson, S. Chemical fractionation of organic phosphorus in selected his to soils. Soil Sci. 1998, 163, 36–45. [Google Scholar] [CrossRef]
- Cheng, H. Distributions of Phosphorus Fractions in Suspended Sediments and Surface Sediments of Tiaoxi Mainstreams and Environmental Significance. Master’s Thesis, Hohai University, Nanjin, China, 2015. [Google Scholar]
- Jing, J. Distribution and Migration Charactertics of the Forms of the Nitrogen and Phosphorus in Sediments of Tiaoxi Watershed and Influence Factor Analysis. Master’s Thesis, Hohai University, Nanjin, China, 2017. [Google Scholar]
- Haiyan, C. Changes of Phosphors Fractions in Soils and Surface Sediments and Environmental Significance in Tiaoxi Tributaries. Master’s Thesis, Hohai University, Nanjin, China, 2016. [Google Scholar]
- Di, Z.Z.; Zhang, H.; Shan, B.Q. Status of internal nutrient loads and their effects on overlying water quality in Taihu Lake. Acta Sci. Circumstantiae 2015, 35, 3872–3882. [Google Scholar]
- Pengbao, W. Characteristic of the Elevated Calcium in Urban Stream Sediments and Their Influence on the Phosphorus Fate. Ph.D. Thesis, Nanjin University, Nanjin, China, 2016. [Google Scholar]
- Shaoyong, L.; Mengshuang, X.; Xiangchan, J. Pollution characteristics and evaluation of nitrogen, phosphorus and organic matter in surface sediments of Changshou Lake. Environ. Sci. 2012, 33, 393–398. [Google Scholar]
- Junjie, C.; Wenbing, Y. Influence of Submerged Plants on Form of Phosphorus in Sediment and Overlying Water. J. Soil Contam. 2017, 23, 72–73. [Google Scholar]
- Suyan, B.; Wei, Z.; Simin, L. Phosphorus forms in surface sediments of shallow lake and their correlation analysis. Environ. Pollut. Control 2014, 5, 9–12. [Google Scholar]
- Liu, H.L.; Jin, X.C.; Jing, Y.F. Environmental dredging technology of lake sediment. Chin. Eng. Sci. 1999, 1, 81–84. [Google Scholar]
- Wenzong, T. Study on the Evolution Process of Sediment Quality in the Estuary of Chaohu Agricultural Area: A Case Study of Phosphorus and Heavy Metals D. Master’s Thesis, Hefei University of Technology, Hefei, China, 2010. [Google Scholar]
- Feng, L.; Zongru, L. Contamination Characteristics of Nitrogen and Phosphorus in Sediments and Simulation of Its Profile Concentration in Pore Water from Shiwuli River in Chaohu Lake. Master’s Thesis, Hefei University of Technology, Hefei, China, 2016. [Google Scholar]
- Jingqi, X. Reseach on Vertical Distribution of Phosphorus Forms in the Sediment of Taihu Lake. Master’s Thesis, Nanjin University of Science and Technology, Nanjin, China, 2010. [Google Scholar]
- Junping, L.; Tailing, M.A.; Tingxi, L. Study on Sediment Phosphorus Release Mechanism of the Environmental Impact in Dahekou Reservoir. Environ. Sci. Technol. 2017, 40, 72–78. [Google Scholar]
- Vaalgamaas, S. The effect of urbanization on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry. Mar. Pollut. Bull. 2004, 48, 650–662. [Google Scholar] [CrossRef]
- Yuanyuan, Z. Preliminary Study on Distribution Characteristics and Biogeochemistry of Various Phosphorus Forms in the Sediments of the East China Sea and the Yellow Sea. Master’s Thesis, Ocean University of China, Qingdao, China, 2009. [Google Scholar]
- Di, X.; Shiming, D.; Li, B. Speciation of organic phosphorus in a sediment profile of Lake Taihu: Chemical forms and their transformation. J. Environ. Sci. 2013, 25, 637–644. [Google Scholar]
- Turner, B.L.; McKelvie, I.D.; Haygarth, P.M. Characterization of water-extractable soil organic phosphorus by phosphatase hydrolysis. J. Soil Biol. Biochem. 2002, 34, 27–35. [Google Scholar] [CrossRef]
- Joakim, A.; Kasper, R.; Rolf, D. Inorganic phosphorus in oligo trophic mountain lake sediments: Differences in composition measured with NMR spectroscopy. Water Res. 2006, 40, 3705–3712. [Google Scholar]
- Kruusement, K.; Punning, J.M. Distribution of phosphorus in the sediment core of hypertrophic Lake Ruusmaee and some palaeo ecological conclusions. Proc. Est. Acad. Sci. Biol. Ecol. 2002, 49, 163–176. [Google Scholar]
- Qingui, H.; Lei, W.; Zijian, W. Advance in the study on Phosphorus speciation, transformation and its potential ecological effects in Chinese lakes. J. Lake Sci. 2006, 18, 18–27. [Google Scholar] [CrossRef]
- Wang, C.; Limin, Z.; Peifang, W. Relation Between Distribution of Phosphorus Form in the Sediment of Typical Urban Shallow Lakes and Eutrophication. Environ. Sci. 2008, 29, 187–192. [Google Scholar]
- Xiaohang, S.; Li, Z.; Ming, Y. Distribution characteristics of suspended phosphorus in Taihu Lake. J. Saf. Environ. 2005, 5, 19–23. [Google Scholar]
- Gonsiorzyk, T.; Casper, P.; Koschel, R. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hard water lake of the Baltic lake district (Germany). Water Sci. Technol. 1998, 37, 51–58. [Google Scholar] [CrossRef]
- Didi, W.; Sun, Y.; Xiaoyong, S. Distribution characteristics of different forms of phosphorus in sediments from the eastern flow area of Rushan Bay. Acta Ecol. Sin. 2008, 5, 2417–2423. [Google Scholar]
- Zhang, R.; Wu, F.; Liu, C. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environ. Pollut. 2008, 152, 366–372. [Google Scholar] [CrossRef]
- Wanqing, L. Study on the Characteristics of Organic Phosphorus Fractions in Lake Sediments. Master’s Thesis, Zhejiang University, Hangzhou, China, 2005. [Google Scholar]
- Corum, K.; Abbaspour Tamijani, A.; Mason, S. Density Functional Theory Study of Arsenate Adsorption onto Alumina Surfaces. Minerals 2018, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Zhaokui, N.; Shengrui, W.; Zhang, B. Response of sediment organic phosphorus composition to lake trophic status in China. Sci. Total Environ. 2019, 652, 495–504. [Google Scholar]
- Jun, L.; Congqiang, L.; Shilu, W. Distribution characteristics of different forms of phosphorus in surface sediments of Wuli Lake, Taihu Lake. Acta Miner. Sin. 2004, 24, 405–409. [Google Scholar]
Region | River Name | Parameters | CaO (%) | MnO (%) | Fe2O3 (%) | Al2O3 (%) | pH | OM (%) | TP (mg·kg−1) | TN (mg·kg−21) | N/P |
---|---|---|---|---|---|---|---|---|---|---|---|
Northwestern | Waste Yellow River | Range | 3.2–3.56 | 0.04–0.10 | 1.58–4.35 | 4.12–8.66 | 6.49–8.17 | 0.11–2.87 | 413.65–597.94 | 686.92–930.41 | 1.52–1.91 |
Mean | 3.38 | 0.07 | 3.15 | 6.39 | 7.47 | 1.22 | 488.90 | 840.96 | 1.72 | ||
CV (%) | 3.42 | 28.10 | 24.64 | 20.54 | 5.00 | 61.69 | 12.00 | 10.00 | 0.07 | ||
Xuhong River | Range | 3.14–4.63 | 0.04–0.10 | 1.91–4.68 | 6.64–11.18 | 7.03–8.2 | 0.19–2.99 | 450.57–692.42 | 554.32–1020.42 | 1.20–1.99 | |
Mean | 4.10 | 0.07 | 3.48 | 8.91 | 7.65 | 0.98 | 566.40 | 887.60 | 1.57 | ||
CV (%) | 11.72 | 27.12 | 22.30 | 14.73 | 4.40 | 78.78 | 15.00 | 17.00 | 0.13 | ||
An River | Range | 3.31–4.81 | 0.04–0.10 | 2.29–5.06 | 8.1–12.65 | 7.47–8.02 | 0.47–3.00 | 372.71–934.86 | 699.29–1220.22 | 1.30–1.88 | |
Mean | 4.26 | 0.07 | 3.68 | 9.24 | 7.67 | 1.39 | 606.75 | 967.83 | 1.60 | ||
CV (%) | 8.65 | 22.59 | 14.96 | 12.96 | 2.30 | 46.29 | 20.00 | 14.00 | 0.1 | ||
Population mean | 3.91 | 0.07 | 3.44 | 8.18 | 7.60 | 1.20 | 554.02 | 898.80 | 1.63 | ||
Western | Sui River | Range | 4.79–6.28 | 0.06–0.11 | 4.2–5.35 | 11.08–15.63 | 7.92–8.71 | 0.84–3.46 | 649.15–1051.45 | 1051.85–1243.00 | 1.12–1.62 |
Mean | 5.89 | 0.08 | 4.45 | 13.80 | 8.34 | 1.73 | 840.22 | 1130.62 | 1.35 | ||
CV (%) | 7.70 | 21.42 | 11.98 | 8.89 | 3.34 | 45.11 | 18.00 | 5.00 | 0.13 | ||
Bian River | Range | 4.79–6.47 | 0.08–0.13 | 4.19–6.22 | 11.27–15.81 | 7.83–9.04 | 0.99–3.92 | 799.76–1076.54 | 813.42–1367.89 | 0.95–1.33 | |
Mean | 6.03 | 0.10 | 5.34 | 14.02 | 8.59 | 2.11 | 960.22 | 1123.82 | 1.17 | ||
CV (%) | 7.42 | 19.03 | 9.52 | 9.54 | 4.10 | 35.32 | 10.00 | 16.00 | 0.11 | ||
Population mean | 5.96 | 0.09 | 4.90 | 13.91 | 8.47 | 1.92 | 900.22 | 1127.22 | 1.26 | ||
Southwestern | Huaihongxin River | Range | 4.05–5.55 | 0.05–0.11 | 2.72–5.40 | 8.71–13.25 | 7.78–8.35 | 0.77–3.04 | 630.21–793.88 | 673.65–1316.54 | 0.84–2.09 |
Mean | 5.06 | 0.08 | 4.02 | 11.22 | 8.07 | 1.68 | 727.51 | 1039.27 | 1.43 | ||
CV (%) | 9.40 | 22.59 | 17.40 | 10.53 | 2.90 | 43.13 | 8.00 | 20.00 | 0.27 | ||
Huaihe River | Range | 3.21–4.71 | 0.05–0.10 | 2.29–5.06 | 8.1–12.65 | 7.20–8.11 | 0.89–2.32 | 547.99–689.67 | 960.54–1120.31 | 1.51–1.67 | |
Mean | 4.33 | 0.07 | 3.77 | 10.74 | 7.80 | 1.54 | 625.48 | 1015.81 | 1.62 | ||
CV (%) | 11.10 | 25.00 | 22.79 | 11.93 | 3.51 | 28.04 | 8.00 | 6.00 | 0.05 | ||
Population mean | 4.695 | 0.075 | 3.895 | 10.98 | 7.935 | 1.61 | 676.5 | 1027.54 | 1.525 |
Region | Sediments | LOP | MLOP | NLOP | OPEX (mg·kg−1) | Po (mg·kg−1) | Recovery (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NaHCO3-PO | HCl-Po | Fuvic Acid-Po | Residual Po | Humic Acid-Po | ||||||||||
(mg·kg−1) | % | (mg·kg−1) | % | (mg·kg−1) | % | (mg·kg−21) | % | (mg·kg−1) | % | |||||
Northwestern | Waste Yellow River | 10.47 | 6.52 | 36.07 | 22.45 | 51.44 | 32.02 | 41.14 | 25.61 | 21.54 | 13.41 | 160.67 | 167.16 | 96.12 |
Xuhong River | 11.22 | 6.12 | 49.90 | 27.22 | 45.00 | 24.55 | 54.47 | 29.71 | 22.74 | 12.40 | 183.34 | 188.59 | 97.22 | |
An River | 11.29 | 5.98 | 56.26 | 29.78 | 40.52 | 21.45 | 57.34 | 30.36 | 23.48 | 12.43 | 188.89 | 197.90 | 106.57 | |
mean | 10.99 | 6.20 | 47.41 | 26.49 | 45.66 | 26.01 | 50.98 | 28.56 | 22.59 | 12.75 | 177.63 | 184.55 | 99.97 | |
Western | Sui River | 12.53 | 5.66 | 73.43 | 33.19 | 29.31 | 13.25 | 84.96 | 38.40 | 21.03 | 9.50 | 221.26 | 208.56 | 106.09 |
Bian River | 13.55 | 5.66 | 79.78 | 33.32 | 25.42 | 10.62 | 102.24 | 42.70 | 18.46 | 7.71 | 239.45 | 228.88 | 104.62 | |
mean | 13.04 | 5.66 | 76.61 | 33.25 | 27.36 | 11.93 | 93.60 | 40.55 | 19.75 | 8.61 | 230.36 | 218.72 | 105.35 | |
Southwestern | Huaihongxin River | 12.01 | 5.75 | 69.13 | 33.09 | 30.02 | 14.37 | 72.52 | 34.72 | 25.20 | 12.06 | 208.89 | 202.63 | 103.09 |
Huai River | 11.58 | 5.90 | 62.63 | 31.92 | 35.80 | 18.25 | 63.05 | 32.14 | 23.13 | 11.79 | 196.19 | 201.19 | 97.52 | |
mean | 11.80 | 5.83 | 65.88 | 32.51 | 32.91 | 16.31 | 67.79 | 33.43 | 24.17 | 11.93 | 202.54 | 201.91 | 100.30 | |
Population mean | 11.81 | 5.94 | 61.25 | 30.51 | 36.34 | 18.11 | 68.81 | 34.28 | 22.21 | 11.06 | 200.74 | 199.80 | 101.60 |
Fractions | MnO | Fe2O3 | Al2O3 | CaO | pH | OM | TN | TP | Po | Pi |
---|---|---|---|---|---|---|---|---|---|---|
Liable Po | 0.759 ** | 0.713 ** | 0.658 ** | 0.671 ** | 0.743 ** | 0.600 ** | 0.578 ** | 0.756 ** | 0.723 ** | 0.696 ** |
Moderately labile Po | 0.682 ** | 0.627 ** | 0.564 ** | 0.911 ** | 0.875 ** | 0.595 ** | 0.572 ** | 0.673 ** | 0.633 ** | 0.658 ** |
Nonlabile Po | 0.759 ** | 0.933 ** | 0.864 ** | 0.575 ** | 0.662 ** | 0.689 ** | 0.680 ** | 0.934 ** | 0.930 ** | 0.511 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Yuan, X.; Han, L.; Ye, H.; Yang, X. Characteristics and Distribution of Organic Phosphorus Fractions in the Surface Sediments of the Inflow Rivers around Hongze Lake, China. Int. J. Environ. Res. Public Health 2020, 17, 648. https://doi.org/10.3390/ijerph17020648
Wan J, Yuan X, Han L, Ye H, Yang X. Characteristics and Distribution of Organic Phosphorus Fractions in the Surface Sediments of the Inflow Rivers around Hongze Lake, China. International Journal of Environmental Research and Public Health. 2020; 17(2):648. https://doi.org/10.3390/ijerph17020648
Chicago/Turabian StyleWan, Jie, Xuyin Yuan, Lei Han, Hongmeng Ye, and Xiaofan Yang. 2020. "Characteristics and Distribution of Organic Phosphorus Fractions in the Surface Sediments of the Inflow Rivers around Hongze Lake, China" International Journal of Environmental Research and Public Health 17, no. 2: 648. https://doi.org/10.3390/ijerph17020648
APA StyleWan, J., Yuan, X., Han, L., Ye, H., & Yang, X. (2020). Characteristics and Distribution of Organic Phosphorus Fractions in the Surface Sediments of the Inflow Rivers around Hongze Lake, China. International Journal of Environmental Research and Public Health, 17(2), 648. https://doi.org/10.3390/ijerph17020648