The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film
Abstract
:1. Introduction
2. Methods
2.1. Preparation of Escherichia coli Suspensions
2.2. Surface Wettability
2.3. Optical Interferometry
2.4. Cleaning Assay
2.5. Bacterial Recovery
2.6. Percentage Coverage of Bacteria and Organic Material (Blood)
2.7. ATP Bioluminescence
2.8. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Houdt, R.; Michiels, C.W. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 2010, 109, 1117–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Indirect Food Additives: Adjuvants. Production Aids, and Sanitizers. Code of Federal Regulations Title 21; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Bayoumi, M.A.; Kamal, R.M.; El Aal, S.F.A.; Awad, E.I. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms. Int. J. Food Microbiol. 2012, 158, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Verran, J.; Whitehead, K.A. Assessment of organic materials and microbial components on hygienic surfaces. Food Bioprod. Process. 2006, 84, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Slate, A.; Wickens, D.; Wilson-Nieuwenhuis, J.; Dempsey-Hibbert, N.; West, G.; Kelly, P.; Verran, J.; Banks, C.E.; Whitehead, K.A. The effects of blood conditioning films on the antimicrobial and retention properties of zirconium-nitride silver surfaces. Colloids Surf. B Biointerfaces 2019, 173, 303–311. [Google Scholar] [CrossRef]
- Saubade, F.; Akhidime, D.; Liauw, C.M.; Benson, P.; Verran, J.; Whitehead, K.A. The detection and effect of retained food soils on cell retention on stainless steel surfaces following use in an operational bakery. Food Bioprod. Process. 2019, 116, 258–267. [Google Scholar]
- Minelli, C.; Kikuta, A.; Tsud, N.; Ball, M.D.; Yamamoto, A. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J. Nanobiotech. 2008, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar]
- Khorasani, M.T.; Mirzadeh, H. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Pol. Sci. 2004, 91, 2042–2047. [Google Scholar] [CrossRef]
- Desrousseaux, C.; Sautou, V.; Descamps, S.; Traoré, O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J. Hospt. Infect. 2013, 85, 87–93. [Google Scholar] [CrossRef]
- Chenga, B.; Inouea, Y.; Ishiharaa, K. Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Coll. Surf. B: Biointerfaces 2019, 173, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kodjikian, L.; Burillon, C.; Chanloy, C.; Bostvironnois, V.; Pellon, G.; Mari, E.; Freney, J.; Roger, T. In vivo study of bacterial adhesion to five types of intraocular lenses. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3717–3721. [Google Scholar]
- Dou, X.Q.; Zhang, D.; Feng, C.; Jiang, L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 2015, 9, 10664–10672. [Google Scholar] [CrossRef] [PubMed]
- Stallard, C.P.; McDonnell, K.A.; Onayemi, O.D.; O’Gara, J.P.; Dowling, D.P. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases 2012, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003–12020. [Google Scholar] [CrossRef]
- Liauw, C.M.; Slate, A.J.; Butler, J.A.; Wilson-Nieuwenhuis, J.S.T.; Deisenroth, T.; Preuss, A.; Verran, J.; Whitehead, K.A. The Effect of Surface Hydrophobicity on the Attachment of Fungal Conidia to Substrates of Polyvinyl Acetate and Polyvinyl Alcohol. J. Polym. Environ. 2020, 28, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, K.A.; Liauw, C.M.; Wilson-Nieuwenhuis, J.S.T.; Slate, A.J.; Deisenroth, T.; Preuss, A.; Verran, J. The effect of the surface properties of poly(methyl methacrylate) on the attachment, adhesion and retention of fungal conidia. AIMS Environ. Sci. 2020, 7, 165–178. [Google Scholar] [CrossRef]
- Tanaka, M.; Sato, K.; Kitakami, E.; Kobayashi, S.; Hoshiba, T.; Fukushima, K. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym. J. 2015, 47, 114–121. [Google Scholar] [CrossRef]
- Jones, A.S.; Rule, J.D.; Moore, J.S.; Sottos, N.R.; White, S.R. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc. Interface 2007, 4, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, K.A.; Verran, J. The effect of substratum properties on the survival of attached microorganisms on inert surfaces. In Marine and Industrial Biofouling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 13–33. [Google Scholar]
- Speranza, G.; Gottardi, G.; Pederzolli, C.; Lunelli, L.; Canteri, R.; Pasquardini, L.; Carli, E.; Lui, A.; Maniglio, D.; Brugnara, M.; et al. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials. 2004, 25, 2029–2037. [Google Scholar] [CrossRef]
- Webb, H.K.; Crawford, R.J.; Sawabe, T.; Ivanova, E.P. Poly(ethylene terephthalate) Polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ. 2009, 24, 39–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.A. Selection of Polymeric Materials: How to Select Design Properties from Different Standards; William Andrew: Norwich, NY, USA, 2008. [Google Scholar]
- Song, H.; Yu, H.; Zhu, L.; Xue, L.; Wu, D.; Chen, H. Durable hydrophilic surface modification for PTFE hollow fiber membranes. React. Funct. Polym. 2017, 114, 110–117. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M. PTFE-coated non-stick cookware and toxicity concerns: A perspective. Environ. Sci. Pollut. Res. 2017, 24, 23436–23440. [Google Scholar] [CrossRef] [PubMed]
- Dhanumalayan, E.; Joshi, G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A review of the properties and applications of poly(methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Razali, A.R.; Razelan, I.S.B.M. Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review. IOP Conf. Series Mater. Sci. Eng. 2017, 203, 12004. [Google Scholar] [CrossRef] [Green Version]
- Hall, C. Polymer Materials: An Introduction for Technologists and Scientists, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Lorite, G.S.; Rodrigues, C.M.; De Souza, A.A.; Kranz, C.; Mizaikoff, B.; Cotta, M.A. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J. Colloid Interface Sci. 2011, 359, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Colligon, J.; Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B Biointerfaces 2005, 41, 129–138. [Google Scholar] [CrossRef]
- Moreira, J.; Gomes, L.C.; Whitehead, K.A.; Lynch, S.; Tetlow, L.; Mergulhão, F. Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation. Food Bioprod. Process. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- Van Houdt, R.; Michiels, C.W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 2005, 156, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.M.; Brassill, N.; Dery, J.L.; Carr, D.; McLain, J.E.; Bright, K.R.; Gerba, C.P. Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule. Environ. Res. 2019, 172, 616–629. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C. A comparison of surface sampling methods for detecting coliforms on food contact surfaces. Food Microbiol. 2002, 19, 65–73. [Google Scholar] [CrossRef]
- Parent, M.-E.; Velegol, D. Escherichia coli adhesion to silica in the presence of humic acid. Colloids Surf. B Biointerfaces 2004, 39, 45–51. [Google Scholar] [CrossRef]
- Garrido, K.D.; Palacios, R.J.S.; Lee, C.; Kang, S. Impact of conditioning film on the initial adhesion of E. coli on polysulfone ultrafiltration membrane. J. Ind. Eng. Chem. 2014, 20, 1438–1443. [Google Scholar] [CrossRef]
- Van Oss, C.J. The hydrophilicity and hydrophobicity of clay minerals. Clays Clay Miner. 1995, 43, 474–477. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Clementi, F.; Tavoletti, S.; Aquilanti, L. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen. Int. J. Environ. Res. Public Health 2014, 11, 10824–10837. [Google Scholar] [CrossRef] [Green Version]
- Omidbakhsh, N.; Ahmadpour, F.; Kenny, N. How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS ONE 2014, 9, e99951. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.-C.; Godwin, S.L. Comparison of a rapid ATP bioluminescence assay and standard plate count methods for assessing microbial contamination of consumers’ refrigerators. J. Food Prot. 2006, 69, 2534–2538. [Google Scholar] [CrossRef] [PubMed]
- Hygiena. Directions for Use of UltrasnapTM ATP Swab with SystemSURE IITM ATP Hygiene Monitoring Device. Available online: https://www.hygiena.com/other-products/ultrasnap-other.html (accessed on 23 July 2020).
- Al Groosh, D.H.; Bozec, L.; Pratten, J.; Hunt, N.P. The influence of surface roughness and surface dynamics on the attachment of Methicillin-Resistant Staphylococcus aureus onto orthodontic retainer materials. Dent. Mater. J. 2015, 34, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, M.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cells Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Kokare, C.R.; Chakraborty, S.; Khopade, A.N.; Mahadik, K.R. Biofilm: Importance and applications. Indian J. Biotechnol. 2009, 8, 159–168. [Google Scholar]
- Engberg, A.E.; Rosengren-Holmberg, J.; Chen, H.; Nilsson, B.; Lambris, J.D.; Nicholls, I.A.; Ekdahl, K.N. Blood protein-polymer adsorption: Implications for understanding complement-mediated hemoincompatibility. J. Biomed. Mater. Res. Part A 2011, 97, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Horbett, T.A.; Ratner, B.D.; Schakenraad, J.M.; Schoen, F.J. Biomaterials Science: An Introduction to Materials in Medicine; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Andersson, J.; Ekdahl, K.N.; Larsson, R.; Nilsson, U.R.; Nilsson, B. C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J. Immunol. 2002, 168, 5786–5791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, W.; Latimer, G.W., Jr. Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E. Residual viral and bacterial contamination of surfaces after cleaning and disinfection. Appl. Environ. Microbiol. 2012, 78, 7769–7775. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, E. An audit of cleaning effectiveness using adenosine triphosphate (ATP) bioluminescence assay following outbreaks of infection. J. Infect. Prev. 2012, 13, 154–157. [Google Scholar] [CrossRef]
- Amodio, E.; Dino, C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: A review of the published literature (1990–2012). J. Infect. Public Health 2014, 7, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Ceriale, E.; Nante, N.; Manzi, P. Effectiveness of ATP bioluminescence to assess hospital cleaning: A reviewEmma Ceriale. Eur. J. Public Health 2014, 24, 177. [Google Scholar] [CrossRef] [Green Version]
- Sanna, T.; Dallolio, L.; Raggi, A.; Mazzetti, M.; Lorusso, G.; Zanni, A.; Farruggia, P.; Leoni, E. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: Applicability and limitations. BMC Infect. Dis. 2018, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.; Meally, A.; Blair, I.; A McDowell, D.; Cowan, C. Food safety knowledge of head chefs and catering managers in Ireland. Food Control 2008, 19, 291–300. [Google Scholar] [CrossRef]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling 2011, 27, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Slate, A.; Shalamanova, L.; Akhidime, D.; Whitehead, K.A. Rhenium and yttrium ions as antimicrobial agents against multidrug resistant Klebsiella pneumoniae and Acinetobacter baumannii biofilms. Lett. Appl. Microbiol. 2019, 69, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukanur, S.; Nagaraj, C.; Latha, G. Study of the effectiveness of 1 % sodium hypochlorite on blood samples discarded in a clinical laboratory. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7. [Google Scholar] [CrossRef]
- Grossman, L.I.; Meiman, B.W. Solution of pulp tissue by chemical agents. J. Am. Dent. Assoc. 1941, 28, 223–225. [Google Scholar] [CrossRef]
- Verran, J.; Boyd, R.D.; Hall, K.; West, R.H. Microbiological and Chemical Analyses of Stainless Steel and Ceramics Subjected to Repeated Soiling and Cleaning Treatments. J. Food Prot. 2001, 64, 1377–1387. [Google Scholar] [CrossRef]
- Verran, J.; Whitehead, K.A. Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int. J. Artif. Organs 2005, 28, 1138–1145. [Google Scholar] [CrossRef]
- Cabeça, T.K.; Pizzolitto, A.C.; Pizzolitto, E.L. Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces. Braz. J. Microbiol. 2012, 43, 1112–1119. [Google Scholar] [CrossRef] [Green Version]
- Sarjit, A.; Dykes, G.A. Antimicrobial activity of trisodium phosphate and sodium hypochlorite against Salmonella biofilms on abiotic surfaces with and without soiling with chicken juice. Food Control 2017, 73, 1016–1022. [Google Scholar] [CrossRef]
- Phillips, C.A. Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control. Int. J. Food Sci. Technol. 2016, 51, 1731–1743. [Google Scholar] [CrossRef]
- Chmielewski, R.; Frank, J. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2003, 2, 22–32. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Listeria monocytogenes: Biofilm formation and persistence in food-processing environments. Biofilms 2004, 1, 107–121. [Google Scholar] [CrossRef]
- Cundell, T. The limitations of the colony-forming unit in microbiology. Eur. Pharm. Rev. 2015, 20, 11–13. [Google Scholar]
Polymer Material | Contact Angle (°) | Sa (nm) | Max Feature Width (µm) | Max Feature Depth (µm) | Min Feature Width (µm) | Min Feature Depth (µm) |
---|---|---|---|---|---|---|
PTFE | 118.8° | 0.23 (±0.02) | 2.94 | 0.75 | 0.58 | 0.05 |
PMMA | 75.2° | 0.04 (±0.05) | 2.94 | 0.29 | 0.09 | 0.01 |
PET | 53.9° | 0.02 (±0.01) | 2.35 | 0.19 | 0.02 | 0.01 |
Polymer Material | Colony-Forming Units (CFU/mL) | |
---|---|---|
Surface—No Blood Conditioning Film | Surface—Blood Conditioning Film | |
PTFE | 0.0 (±0.0) | 2.0 × 102 (±2.4) |
PMMA | 1.2 × 107 (±1.4) | 0.0 (±0.0) |
PET | 6.25 × 107 (±3.2) | 1.25 × 103 (±1.9) |
Conditions Tested | ATP Quantification (RLU) | ||
---|---|---|---|
PTFE | PMMA | PET | |
Surfaces prior to cleaning | 132 (±29.1) | 80 (±12.4) | 99 (±31.5) |
Surfaces post cleaning | 1 (±1.0) | 0 (±0.0) | 1 (±0.6) |
Surfaces with blood conditioning film post cleaning | 2 (±3.5) | 1 (±1.0) | 2 (±1.2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhidime, I.D.; Slate, A.J.; Hulme, A.; Whitehead, K.A. The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film. Int. J. Environ. Res. Public Health 2020, 17, 7368. https://doi.org/10.3390/ijerph17207368
Akhidime ID, Slate AJ, Hulme A, Whitehead KA. The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film. International Journal of Environmental Research and Public Health. 2020; 17(20):7368. https://doi.org/10.3390/ijerph17207368
Chicago/Turabian StyleAkhidime, I. Devine, Anthony J. Slate, Anca Hulme, and Kathryn A. Whitehead. 2020. "The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film" International Journal of Environmental Research and Public Health 17, no. 20: 7368. https://doi.org/10.3390/ijerph17207368
APA StyleAkhidime, I. D., Slate, A. J., Hulme, A., & Whitehead, K. A. (2020). The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film. International Journal of Environmental Research and Public Health, 17(20), 7368. https://doi.org/10.3390/ijerph17207368