Understanding How Nutrition Literacy Links to Dietary Adherence in Patients Undergoing Maintenance Hemodialysis: A Theoretical Exploration using Partial Least Squares Structural Equation Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Recruitment
2.2. Evaluating Aspects
2.3. Questionnaire Development and Testing
2.3.1. Nutrition Literacy
2.3.2. Dietary Adherence
Adherence Behaviours
Dietary Intake
Laboratory Measures
2.3.3. Dialysis-Related Dietary Knowledge
2.3.4. Health Belief
2.3.5. Self-Management Skills
2.4. Questionnaire Administration
2.5. Measurement Model
2.6. Statistical Analyses
3. Results
3.1. Assessment of the Measurement Model
3.2. Patients’ Characteristics
3.3. Nutrition Literacy
3.4. Dietary Adherence
3.5. Mediation Analysis
3.6. Full Relationship Continuum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Renal Data System. USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2018. [Google Scholar]
- Achinger, S.G.; Ayus, J.C. The role of daily dialysis in the control of hyperphosphatemia. Kidney Int. 2005, 67, S28–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelfarb, J.; Ikizler, T.A. Hemodialysis. N. Engl. J. Med. 2010, 363, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Fouque, D. Pro: The rationale for dietary therapy for patients with advanced chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Curtin, R.B.; Mapes, D.; Schatell, D.; Burrows-Hudson, S. Self-management in patients with end stage renal disease: Exploring domains and dimensions. Nephrol. Nurs. J. 2005, 32, 389–395. [Google Scholar]
- Lambert, K.; Mullan, J.; Mansfield, K.J. An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease. BMC Nephrol. 2017, 18, 318. [Google Scholar] [CrossRef] [Green Version]
- Biruete, A.; Jeong, J.H.; Barnes, J.L.; Wilund, K.R. Modified Nutritional Recommendations to Improve Dietary Patterns and Outcomes in Hemodialysis Patients. J. Ren. Nutr. 2017, 27, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Gebrie, M.H.; Ford, J. Depressive symptoms and dietary non-adherence among end stage renal disease patients undergoing hemodialysis therapy: Systematic review. BMC Nephrol. 2019, 20, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Brunelli, S.M.; Jensen, D.E.; Yang, A. Association between Serum Potassium and Outcomes in Patients with Reduced Kidney Function. Clin. J. Am. Soc. Nephrol. 2015, 11, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, E.W.; Akiba, T.; Albert, J.M.; McCarthy, J.T.; Kerr, P.G.; Mendelssohn, D.C.; Jadoul, M. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the dialysis outcomes and practice patterns study (DOPPS). Am. J. Kidney Dis. 2004, 44, 34–38. [Google Scholar] [CrossRef]
- Saran, R.; Bragg-Gresham, J.L.; Rayner, H.C.; Goodkin, D.A.; Keen, M.L.; Van Dijk, P.C.; Kurokawa, K.; Piera, L.; Saito, A.; Fukuhara, S.; et al. Nonadherence in hemodialysis: Associations with mortality, hospitalization, and practice patterns in the DOPPS. Kidney Int. 2003, 64, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Tentori, F.; Blayney, M.J.; Albert, J.M.; Gillespie, B.W.; Kerr, P.G.; Bommer, J.; Young, E.W.; Akizawa, T.; Akiba, T.; Pisoni, R.L.; et al. Mortality Risk for Dialysis Patients With Different Levels of Serum Calcium, Phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2008, 52, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Green, J.A.; Mor, M.K.; Shields, A.M.; Sevick, M.A.; Arnold, R.M.; Palevsky, P.M.; Fine, M.J.; Weisbord, S.D. Associations of Health Literacy With Dialysis Adherence and Health Resource Utilization in Patients Receiving Maintenance Hemodialysis. Am. J. Kidney Dis. 2013, 62, 73–80. [Google Scholar] [CrossRef]
- Skoumalova, I.; Kolarcik, P.; Geckova, A.M.; Rosenberger, J.; Majernikova, M.; Klein, D.; Van Dijk, J.P.; Reijneveld, S.A. Is Health Literacy of Dialyzed Patients Related to Their Adherence to Dietary and Fluid Intake Recommendations? Int. J. Environ. Res. Public Health 2019, 16, 4295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qobadi, M.; Besharat, M.A.; Rostami, R.; Rahiminezhad, A. Health Literacy and Medical Adherence in Hemodialysis Patients: The Mediating Role of Disease-Specific Knowledge. Thrita 2015, 4, 26195. [Google Scholar] [CrossRef]
- Devraj, R.; Gordon, E.J. Health Literacy and Kidney Disease: Toward a New Line of Research. Am. J. Kidney Dis. 2009, 53, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, K.; (HLS-EU) Consortium Health Literacy Project European; Broucke, S.V.D.; Fullam, J.; Doyle, G.; Pelikan, J.M.; Słońska, Z.A.; Brand, H. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 2012, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Aaby, A.; Friis, K.; Christensen, B.; Rowlands, G.; Maindal, H.T. Health literacy is associated with health behaviour and self-reported health: A large population-based study in individuals with cardiovascular disease. Eur. J. Prev. Cardiol. 2017, 24, 1880–1888. [Google Scholar] [CrossRef] [Green Version]
- Berkman, N.D.; Sheridan, S.L.; Donahue, K.E.; Halpern, D.J.; Crotty, K. Low Health Literacy and Health Outcomes: An Updated Systematic Review. Ann. Intern. Med. 2011, 155, 97. [Google Scholar] [CrossRef]
- Miller, T.A. Health literacy and adherence to medical treatment in chronic and acute illness: A meta-analysis. Patient Educ. Couns. 2016, 99, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Carbone, E.T.; Zoellner, J.M. Nutrition and Health Literacy: A Systematic Review to Inform Nutrition Research and Practice. J. Acad. Nutr. Diet. 2012, 112, 254–265. [Google Scholar] [CrossRef]
- Velardo, S. The Nuances of Health Literacy, Nutrition Literacy, and Food Literacy. J. Nutr. Educ. Behav. 2015, 47, 385.e1–389.e1. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Hatch, J.; Martin, W.; Higgins, J.W.; Sheppard, R. Food Literacy: Definition and Framework for Action. Can. J. Diet. Pr. Res. 2015, 76, 140–145. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health literacy toolkit for low- and Middle-Income Countries: A Series of Information Sheets to Empower Communities and Strengthen Health Systems. Available online: https://apps.who.int/iris/handle/10665/205244 (accessed on 24 August 2020).
- Bello, A.K.; Levin, A.; Lunney, M.; Osman, M.A.; Ye, F.; Ashuntantang, G.; Bellorin-Font, E.; Benghanem, G.M.; Ghnaimat, M.; Harden, P.; et al. Global Kidney Health Atlas: A Report by the International Society of Nephrology on the Global Burden of End-Stage Kidney Disease and Capacity for Kidney Replacement Therapy and Conservative Care across World Countries and Regions; International Society of Nephrology: Brussels, Belgium, 2019; p. 70. [Google Scholar]
- Squiers, L.; Peinado, S.; Berkman, N.; Boudewyns, V.; McCormack, L. The Health Literacy Skills Framework. J. Health Commun. 2012, 17, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Beyond Baron and Kenney: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Elliott, J.O.; Ortman, C.; Almaani, S.; Lee, Y.H.; Jordan, K. Understanding the Associations Between Modifying Factors, Individual Health Beliefs, and Hemodialysis Patients’ Adherence to a Low-Phosphorus Diet. J. Ren. Nutr. 2015, 25, 111–120. [Google Scholar] [CrossRef]
- Lee, S.-H.; Molassiotis, A. Dietary and fluid compliance in Chinese hemodialysis patients. Int. J. Nurs. Stud. 2002, 39, 695–704. [Google Scholar] [CrossRef]
- Agondi, R.D.F.; Gallani, M.C.B.J.; Rodrigues, R.C.; Cornélio, M.E. Relationship Between Beliefs Regarding a Low Salt Diet in Chronic Renal Failure Patients on Dialysis. J. Ren. Nutr. 2011, 21, 160–168. [Google Scholar] [CrossRef]
- Thomas, L.K.; Sargent, R.G.; Michels, P.C.; Richter, D.L.; Valois, R.F.; Moore, C.G. Identification of the factors associated with compliance to therapeutic diets in older adults with end stage renal disease. J. Ren. Nutr. 2001, 11, 80–89. [Google Scholar] [CrossRef]
- Narva, A.; Norton, J.M.; Boulware, L.E. Educating Patients about CKD: The Path to Self-Management and Patient-Centered Care. Clin. J. Am. Soc. Nephrol. 2015, 11, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Griva, K.; Nandakumar, M.; Ng, J.-A.H.; Lam, K.F.; McBain, H.; Newman, S. Hemodialysis Self-management Intervention Randomized Trial (HED-SMART): A Practical Low-Intensity Intervention to Improve Adherence and Clinical Markers in Patients Receiving Hemodialysis. Am. J. Kidney Dis. 2018, 71, 371–381. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.J.F.; Nitzl, C.; Ringle, C.M.; Howard, M.C. Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! Int. J. Mark. Res. 2020, 62, 288–299. [Google Scholar] [CrossRef]
- Chan, Y.M.; Zalilah, M.S.; Hii, S.Z. Determinants of Compliance Behaviours among Patients Undergoing Hemodialysis in Malaysia. PLoS ONE 2012, 7, e41362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, R. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA, 2016; 271p. [Google Scholar]
- Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Inf. Syst. J. 2016, 28, 227–261. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE: Los Angeles, CA, USA, 2017; pp. 18–22. [Google Scholar]
- Pelikan, J.M.; Rothlin, F.; Boltzmann, K. Measuring comprehensive health literacy in general population: Validation of instrument, indices and scales of the HLS-EU study. In Proceedings of the 6th Annual Health Literacy Research Conference, Bethesda, MD, USA, 3–4 November 2014. [Google Scholar]
- Duong, T.V.; Aringazina, A.; Baisunova, G.; Nurjanah; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Myint Oo, W.; Mohamad, E.; et al. Measuring health literacy in Asia: Validation of the HLS-EU-Q47 survey tool in six Asian countries. J. Epidemiol. 2017, 27, 80–86. [Google Scholar] [CrossRef]
- Abdullah, A.; Liew, S.M.; Salim, H.S.; Ng, C.J.; Chinna, K. Health Literacy Research in Malaysia: A Scoping Review. Sains Malays. 2020, 49, 1021–1036. [Google Scholar] [CrossRef]
- Nutbeam, D. Health literacy as a public health goal: A challenge for contemporary health education and communication strategies into the 21st century. Health Promot. Int. 2000, 15, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Subedi, B.P. Using Likert Type Data in Social Science Research: Confusion, Issues and Challenges. Int. J. Comtemporary Appl. Sci. 2016, 3, 2. [Google Scholar]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Boone, H.N.; Boone, D.A. Analyzing Likert Data. J. Ext. 2012, 50, 2. [Google Scholar]
- Carifio, J.; Perla, R.J. Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. J. Soc. Sci. 2007, 3, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Polit, D.F.; Beck, C.T. The content validity index: Are you sure you know what’s being reported? critique and recommendations. Res. Nurs. Health 2006, 29, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Oquendo, L.G.; Asencio, J.M.M.; Nieves, C.B.D.L. Contributing factors for therapeutic diet adherence in patients receiving haemodialysis treatment: An integrative review. J. Clin. Nurs. 2017, 26, 3893–3905. [Google Scholar] [CrossRef] [PubMed]
- Naalweh, K.S.; Barakat, M.A.; Sweileh, M.W.; Al-Jabi, S.W.; Sweileh, W.M.; Zyoud, S.H. Treatment adherence and perception in patients on maintenance hemodialysis: A cross—Sectional study from Palestine. BMC Nephrol. 2017, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, G.B.; Robinson, J.R.; Walker, C.A. Adherence to Treatment by African Americans Undergoing Hemodialysis. Nephrol. Nurs. J. 2018, 45, 561–568. [Google Scholar] [PubMed]
- Suganthi, S.; Arjunan, P.; Geetha, P. Assess the Illness Perception and Treatment Adherence among Patients with End-Stage Renal Disease. Iran. J. Nurs. Midwifery Res. 2019, 25, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Opiyo, R.O.; Nyasulu, P.S.; Olenja, J.; Zunza, M.; Nguyen, K.A.; Bukania, Z.; Nabakwe, E.; Mbogo, A.; Were, A.O. Factors associated with adherence to dietary prescription among adult patients with chronic kidney disease on hemodialysis in national referral hospitals in Kenya: A mixed-methods survey. Ren. Replace. Ther. 2019, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Evangelista, L.S.; Phillips, L.R.; Pavlish, C.; Kopple, J.D. The End-Stage Renal Disease Adherence Questionnaire (ESRD-AQ): Testing the psychometric properties in patients receiving in-center hemodialysis. Nephrol. Nurs. J. 2010, 37, 377–393. [Google Scholar]
- Wu, H.; Leung, S.-O. Can Likert Scales be Treated as Interval Scales?—A Simulation Study. J. Soc. Serv. Res. 2017, 43, 527–532. [Google Scholar] [CrossRef]
- Kopple, J.D. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2001, 37, S66–S70. [Google Scholar] [CrossRef]
- E Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- DuRose, C.L.; Holdsworth, M.; Watson, V.; Przygrodzka, F. Knowledge of dietary restrictions and the medical consequences of noncompliance by patients on hemodialysis are not predictive of dietary compliance. J. Am. Diet. Assoc. 2004, 104, 35–41. [Google Scholar] [CrossRef]
- Medical Nutrition Therapy Guidelines for Chronic Kidney Disease Working Group Committee. Medical Nutrition Therapy Guidelines for Chronic Kidney Disease: Malaysian Dietitians’ Association. Available online: http://storage.unitedwebnetwork.com/files/290/8a1062a0d440dde5c9b5aa3317bb9e89.pdf (accessed on 24 May 2020).
- Welch, J.L.; Bennett, S.J.; Delp, R.L.; Agarwal, R. Benefits of and Barriers to Dietary Sodium Adherence. West. J. Nurs. Res. 2006, 28, 162–180. [Google Scholar] [CrossRef]
- Welch, J.L.; Perkins, S.M.; Evans, J.D.; Bajpai, S. Differences in perceptions by stage of fluid adherence. J. Ren. Nutr. 2003, 13, 275–281. [Google Scholar] [CrossRef]
- Hong, L.I.; Wang, W.; Chan, E.Y.; Mohamed, F.; Chen, H.C. Dietary and fluid restriction perceptions of patients undergoing haemodialysis: An exploratory study. J. Clin. Nurs. 2017, 26, 3664–3676. [Google Scholar] [CrossRef]
- Hickey, M.L.; Owen, S.V.; Froman, R.D. Instrument development: Cardiac diet and exercise self-efficacy. Nurs. Res. 1992, 41, 347–351. [Google Scholar]
- Welch, J.L.; Astroth, K.S.; Perkins, S.M.; Johnson, C.S.; Connelly, K.; Siek, K.A.; Jones, J.; Scott, L.L. Using a mobile application to self-monitor diet and fluid intake among adults receiving hemodialysis. Res. Nurs. Health 2013, 36, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.G.; Wallston, K.A.; Green, J.A.; Beach, L.B.; Umeukeje, E.; Nunes, J.A.W.; Ikizler, T.A.; Steed, J.; Cavanaugh, K.L. The Perceived Medical Condition Self-Management Scale can be applied to patients with chronic kidney disease. Kidney Int. 2017, 92, 972–978. [Google Scholar] [CrossRef]
- Hair, J.F.; Howard, M.C.; Nitzl, C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J. Bus. Res. 2020, 109, 101–110. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis; Guilford Publications: New York, NY, USA, 2018; p. 425. [Google Scholar]
- St-Jules, D.E.; Woolf, K.; Pompeii, M.L.; Sevick, M.A. Exploring Problems in Following the Hemodialysis Diet and Their Relation to Energy and Nutrient Intakes: The BalanceWise Study. J. Ren. Nutr. 2016, 26, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Green, J.A.; Mor, M.K.; Shields, A.M.; Sevick, M.A.; Palevsky, P.M.; Fine, M.J.; Arnold, R.M.; Weisbord, S.D. Prevalence and demographic and clinical associations of health literacy in patients on maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 1354–1360. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, K.L.; Wingard, R.L.; Hakim, R.M.; Eden, S.; Shintani, A.; Wallston, K.A.; Huizinga, M.M.; Elasy, T.A.; Rothman, R.L.; Ikizler, T.A. Low health literacy associates with increased mortality in ESRD. J. Am. Soc. Nephrol. 2010, 21, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.; Bradley, J.A.; Bradley, C.; Draper, H.; Johnson, R.; Metcalfe, W.; Oniscu, G.; Robb, M.; Tomson, C.; Watson, C.; et al. Limited health literacy in advanced kidney disease. Kidney Int. 2016, 90, 685–695. [Google Scholar] [CrossRef]
- Khor, B.-H.; China, K.; Halim, A.G.; Zaher, Z.M.M.; Ahmad, G.; Bavanandan, S.; Visvanathan, R.; Yahya, R.; Goh, B.L.; Bee, B.-C.; et al. The state of nutrition care in outpatient hemodialysis settings in Malaysia: A nationwide survey. BMC Health Serv. Res. 2018, 18, 939. [Google Scholar] [CrossRef]
- Karupaiah, T.; Morad, Z. Perspectives on the Nutritional Management of Renal Disease in Asia: People, Practice, and Programs. J. Ren. Nutr. 2007, 17, 93–96. [Google Scholar] [CrossRef]
- Pafili, Z.; Maridaki, M.; Giannaki, C.D.; Karatzaferi, C.; Liakopoulos, V.; Eleftheriadis, T.; Stefanidis, I.; Sakkas, G.K. Phosphorus nutritional knowledge among dialysis health care providers and patients: A multicenter observational study. Clin. Nutr. ESPEN 2019, 31, 33–37. [Google Scholar] [CrossRef]
- Stevenson, J.; Tong, A.; Campbell, K.L.; Craig, J.C.; Lee, V.W.S. Perspectives of healthcare providers on the nutritional management of patients on haemodialysis in Australia: An interview study. BMJ Open 2018, 8, e020023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.-C.; Yang, J.-Y.; Luan, C.-C.; Wang, Y.-J.; Lai, Y.-C.; Liu, L.-C.; Peng, Y.-S. Additional benefit of dietitian involvement in dialysis staffs-led diet education on uncontrolled hyperphosphatemia in hemodialysis patients. Clin. Exp. Nephrol. 2015, 20, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.W.; Slomka, J.; E Blixen, C. Cultural and clinical issues in the care of Asian patients. Clevel. Clin. J. Med. 2002, 69, 50. [Google Scholar] [CrossRef] [PubMed]
- Easton, P.M.; Entwistle, V.; Williams, B. How the stigma of low literacy can impair patient-professional spoken interactions and affect health: Insights from a qualitative investigation. BMC Health Serv. Res. 2013, 13, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, E.R.; Costello, K.L.; Jo, M.; Gilet, C.A.; Hawley, J.M.; Bridgman, J.C.; Song, M.-K. A systematic evaluation of websites offering information on chronic kidney disease. Nephrol. Nurs. 2014, 41, 355. [Google Scholar]
- Dageforde, L.A.; Cavanaugh, K.L. Health literacy: Emerging evidence and applications in kidney disease care. Adv. Chronic Kidney Dis. 2013, 20, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Chesser, A.K.; Woods, M.N.K.; Smothers, K.; Rogers, N. Health Literacy and Older Adults. Gerontol. Geriatr. Med. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Cutilli, C.C. Health Literacy in Geriatric Patients. Orthop. Nurs. 2007, 26. [Google Scholar] [CrossRef]
- Weiss, B.D. Health Literacy and Patient Safety: Help Patients Understand. Manual for Clinicians; American Medical Association Foundation: Chicago, IL, USA, 2007. [Google Scholar]
- Jain, D.; Green, J.A. Health literacy in kidney disease: Review of the literature and implications for clinical practice. World J. Nephrol. 2016, 5, 147–151. [Google Scholar] [CrossRef]
- Volandes, A.E.; Paasche-Orlow, M.K. Health Literacy, Health Inequality and a Just Healthcare System. Am. J. Bioeth. 2007, 7, 5–10. [Google Scholar] [CrossRef]
- Ostini, R.; Kairuz, T.E. Investigating the association between health literacy and non-adherence. Int. J. Clin. Pharm. 2013, 36, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, L.A.; Go, L.; Fleisher, J.; Jain, N.; Friesema, E.; Baker, D.W. Relationship of Health Literacy to Intentional and Unintentional Non-Adherence of Hospital Discharge Medications. J. Gen. Intern. Med. 2011, 27, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health literacy: Report of the Council on Scientific Affairs. Ad Hoc Committee on Health Literacy for the Council on Scientific Affairs, American Medical Association. JAMA 1999, 281, 552–557. [Google Scholar] [CrossRef]
- Lastrucci, V.; Lorini, C.; Caini, S.; Bonaccorsi, G. Florence Health Literacy Research Group Health literacy as a mediator of the relationship between socioeconomic status and health: A cross-sectional study in a population-based sample in Florence. PLoS ONE 2019, 14, e0227007. [Google Scholar] [CrossRef] [Green Version]
- Pelikan, J.; Ganahl, K.; Roethlin, F. Health literacy as a determinant, mediator and/or moderator of health: Empirical models using the European Health Literacy Survey dataset. Glob. Health Promot. 2018, 25, 57–66. [Google Scholar] [CrossRef]
- Paasche-Orlow, M.K.; Wolf, M.S. The Causal Pathways Linking Health Literacy to Health Outcomes. Am. J. Health Behav. 2007, 31, 19–26. [Google Scholar] [CrossRef]
- Boulware, L.E.; Carson, K.A.; Troll, M.U.; Powe, N.R.; Cooper, L.A. Perceived Susceptibility to Chronic Kidney Disease among High-risk Patients Seen in Primary Care Practices. J. Gen. Intern. Med. 2009, 24, 1123–1129. [Google Scholar] [CrossRef]
- Khawnekar, D.; Jeanes, Y.; Gibson, E.; Held, I.; Rutherford, P. Does Dietary Knowledge in Patients on Haemodialysis Influence Compliance? In Proceedings of the OCE Malnutrition Matters, Joint BAPEN and Nutrition Society, Harrogate, UK, 4–5 November 2008; p. E68. [Google Scholar]
- DeWalt, D.A.; Callahan, L.F.; Hawk, V.H.; Broucksou, K.A.; Hink, A.; Rudd, R.; Brach, C.; Health Literacy Universal Precautions Toolkit. Prepared by North Carolina Network Consortium. The Cecil G. USA: Sheps Center for Health Services Research. 2010. Available online: https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/quality-patient-safety/quality-resources/tools/literacy-toolkit/healthliteracytoolkit.pdf (accessed on 28 June 2020).
- Usherwoord, T. Encouraging Adherence to Long-Term Medication. Aust. Prescr. 2017, 40, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Náfrádi, L.; Galimberti, E.; Nakamoto, K.; Schulz, P.J. Intentional and unintentional medication non-adherence in hypertension: The role of health literacy, empowerment and medication beliefs. J. Public Health Res. 2016, 5, 762. [Google Scholar] [CrossRef] [Green Version]
- Wroe, A.L. Intentional and Unintentional Nonadherence: A Study of Decision Making. J. Behav. Med. 2002, 25, 355–372. [Google Scholar] [CrossRef]
- Bowling, A. Mode of questionnaire administration can have serious effects on data quality. J. Public Health 2005, 27, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
Variables | n (%) | Mean (SD) | Range |
---|---|---|---|
Gender | |||
Male | 116 (53.2) | ||
Female | 102 (46.8) | ||
Age (years) | 54.8 (12.8) | 18–77 | |
18–30 | 12 (5.5) | ||
31–40 | 24 (11.0) | ||
41–50 | 32 (14.7) | ||
51–60 | 61 (28.0) | ||
>60 | 89 (40.8) | ||
Ethnicity | |||
Malay | 125 (57.4) | ||
Chinese | 65 (29.8) | ||
Indian | 28 (12.8) | ||
Marital Status | |||
Single | 25 (11.5) | ||
Married | 183 (83.9) | ||
Divorced | 10 (4.6) | ||
Education Level | |||
None | 8 (3.7) | ||
Primary | 54 (24.8) | ||
Secondary | 101 (46.3) | ||
Tertiary | 55 (25.2) | ||
Employment Status | |||
Working | 54 (24.8) | ||
Not working | 164 (75.2) | ||
Monthly Income | |||
≤RM1000 | 120 (55.0) | ||
>RM1000 | 98 (45.0) | ||
Dialysis Vintage (months) | 67.2 (54.3) | 6–272 | |
<12 | 17 (7.8) | ||
12–48 | 89 (40.8) | ||
>48 | 112 (51.4) |
Variables | Nutrition Literacy | p-Value | Dietary Adherence | p-Value |
---|---|---|---|---|
Gender | 0.280 | <0.001 | ||
Male | 51.5 ± 31.5 | 39.9 ± 27.8 | ||
Female | 56.1 ± 31.3 | 54.1 ± 24.3 | ||
Age (years) | <0.001 | 0.907 | ||
18–30 | 60.0 ± 28.2 | 39.6 ± 22.7 | ||
31–40 | 75.1 ± 29.9 ab | 48.8 ± 23.1 | ||
41–50 | 64.8 ± 28.4 c | 45.9 ± 29.3 | ||
51–60 | 53.3 ± 30.8 a | 47.4 ± 27.8 | ||
>60 | 43.6 ± 30.0 bc | 46.5 ± 27.7 | ||
Ethnicity | 0.006 | 0.428 | ||
Malay | 58.7 ± 30.1 a | 48.5 ± 27.6 | ||
Chinese | 50.0 ± 32.5 | 43.2 ± 26.3 | ||
Indian | 39.3 ± 30.0 a | 45.2 ± 27.0 | ||
Marital Status | 0.244 | 0.521 | ||
Single | 62.3 ± 33.5 | 43.4 ± 19.2 | ||
Married | 53.0 ± 30.7 | 46.5 ± 28.0 | ||
Divorced | 44.4 ± 37.4 | 55.0 ± 27.1 | ||
Education Level | <0.001 | 0.099 | ||
None | 34.1 ± 20.2 a | 60.6 ± 24.3 | ||
Primary | 37.4 ± 26.2 bc | 44.7 ± 26.3 | ||
Secondary | 53.2 ± 33.1 bd | 43.3 ± 27.8 | ||
Tertiary | 73.2 ± 22.5 acd | 52.2 ± 26.1 | ||
Employment Status | 0.014 | 0.946 | ||
Working | 62.8 ± 30.4 | 46.3 ± 28.7 | ||
Not working | 50.6 ± 31.3 | 46.6 ± 26.7 | ||
Monthly Income | 0.001 | 0.222 | ||
≤RM1000 | 47.5 ± 31.1 | 48.5 ± 26.5 | ||
>RM1000 | 61.2 ± 30.3 | 44.0 ± 27.8 | ||
Dialysis Vintage (months) | 0.012 | 0.602 | ||
<12 | 34.9 ± 26.6 a | 43.0 ± 30.4 | ||
12–48 | 50.8 ± 30.9 | 47.6 ± 24.4 | ||
>48 | 58.8 ± 31.4 a | 47.5 ± 27.0 |
Variables | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|
Block 1 | Block 2 | Block 3 | ||||||
β | R2 | β | R2 | β | R2 | β | R2 | |
0.299 | 0.140 | 0.247 | 0.412 | |||||
Age | −0.202 * | 0.167 | 0.246 ** | 0.132 | ||||
Gender a | ||||||||
Female | 0.101 | 0.287 *** | 0.248 *** | 0.177 ** | ||||
Ethnicity b | ||||||||
Chinese | 0.054 | −0.127 | −0.148 | −0.109 | ||||
Indian | −0.096 | 0.002 | 0.035 | −0.001 | ||||
Marital Status c | ||||||||
Married | 0.039 | −0.065 | −0.080 | −0.073 | ||||
Divorced | −0.001 | 0.058 | 0.058 | 0.065 | ||||
Education Level d | ||||||||
None | −0.200 ** | −0.011 | 0.067 | 0.033 | ||||
Primary | −0.443 *** | −0.185 | −0.013 | −0.034 | ||||
Secondary | −0.307 *** | −0.201 | −0.081 | −0.094 | ||||
Employment e Status | ||||||||
Working | −0.027 | 0.136 | 0.147 | 0.038 | ||||
Monthly Income f | ||||||||
≤RM1000 | −0.030 | 0.135 | 0.147 | 0.040 | ||||
Dialysis Vintage | 0.240 *** | 0.097 | 0.004 | 0.015 | ||||
Nutrition Literacy | 0.390 *** | −0.043 | ||||||
Dietary Knowledge | 0.105 | |||||||
Perceived Benefit | 0.016 | |||||||
Perceived Barrier | −0.011 | |||||||
Perceived Seriousness | 0.024 | |||||||
Perceived Susceptibility | 0.001 | |||||||
Perceived Self-Efficacy | 0.338 *** | |||||||
Self-Management Skills | 0.246 ** |
Direct Effects | Path | t (>1.96) | BC 95% CI | f2 | VIF (<5) | R2 (≥0.1) | Q2 (>0) | |
LB | UB | |||||||
NL → DA | −0.144 | 1.344 | −0.347 | 0.071 | 0.011 | 2.845 | 0.352 | 0.304 |
DK → DA | 0.148 | 1.532 | 0.013 | 2.579 | ||||
BE → DA | 0.002 | 0.031 | 0.000 | 1.561 | ||||
BA → DA | 0.032 | 0.285 | 0.001 | 1.729 | ||||
SE → DA | 0.044 | 0.642 | 0.002 | 1.271 | ||||
SU → DA | 0.027 | 0.319 | 0.001 | 1.131 | ||||
EF → DA | 0.373 *** | 4.777 | 0.121 | 1.776 | ||||
SMS → DA | 0.321 *** | 3.980 | 0.088 | 1.817 | ||||
NL → DK | 0.715 *** | 24.640 | 0.657 | 0.769 | 1.048 | 1.000 | 0.512 | 0.508 |
NL → BE | 0.380 *** | 6.284 | 0.267 | 0.503 | 0.169 | 1.000 | 0.144 | 0.071 |
NL → BA | −0.501 *** | 7.836 | −0.606 | −0.375 | 0.335 | 1.000 | 0.251 | 0.074 |
NL → SE | 0.103 | 1.144 | −0.127 | 0.254 | 0.011 | 1.000 | 0.011 | 0.004 |
NL → SU | 0.114 | 0.850 | −0.226 | 0.264 | 0.013 | 1.000 | 0.013 | −0.010 |
NL → EF | 0.499 *** | 10.571 | 0.405 | 0.593 | 0.331 | 1.000 | 0.249 | 0.114 |
NL → SMS | 0.598 *** | 14.632 | 0.515 | 0.678 | 0.556 | 1.000 | 0.357 | 0.189 |
Indirect Effects | SIE | t (>1.96) | BC 95% CI | VAF (%) | ||||
LB | UB | |||||||
(1) NL → BA → DA | −0.016 | 0.291 | −0.147 | 0.076 | 4.8 | |||
(2) NL → BE→ DA | 0.001 | 0.030 | −0.055 | 0.052 | 0.3 | |||
(3) NA → EF → DA | 0.186 *** | 4.406 | 0.110 | 0.280 | 55.9 | |||
(4) NL → SMS → DA | 0.192 *** | 3.840 | 0.103 | 0.304 | 57.7 | |||
(5) NL → SU → DA | 0.003 | 0.235 | −0.026 | 0.026 | 0.9 | |||
(6) NL → DK → DA | 0.106 | 1.577 | −0.022 | 0.246 | 31.8 | |||
(7) NL → SE → DA | 0.005 | 0.400 | −0.021 | 0.027 | 1.5 |
Serial Mediation Paths | SIE | t (>1.96) | BC 95% CI | VAF (%) | |
---|---|---|---|---|---|
LB | UB | ||||
(1) Age → NL → EF → DA | −0.039 * | 2.489 | −0.078 | −0.014 | 55.7 |
(2) Education → NL → EF→ DA | 0.057 ** | 3.286 | 0.031 | 0.102 | 56.4 |
(3) Dialysis vintage → NL → EF → DA | 0.055 *** | 3.567 | 0.032 | 0.095 | 56.1 |
(4) Age → NL → SMS → DA | −0.041 * | 2.332 | −0.084 | −0.013 | 58.6 |
(5) Education → NL → SMS → DA | 0.059 ** | 2.864 | 0.026 | 0.110 | 58.4 |
(6) Dialysis vintage → NL → SMS → DA | 0.057 ** | 3.082 | 0.027 | 0.102 | 58.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.-H.; Chinna, K.; Khosla, P.; Karupaiah, T.; Daud, Z.A.M. Understanding How Nutrition Literacy Links to Dietary Adherence in Patients Undergoing Maintenance Hemodialysis: A Theoretical Exploration using Partial Least Squares Structural Equation Modeling. Int. J. Environ. Res. Public Health 2020, 17, 7479. https://doi.org/10.3390/ijerph17207479
Lim J-H, Chinna K, Khosla P, Karupaiah T, Daud ZAM. Understanding How Nutrition Literacy Links to Dietary Adherence in Patients Undergoing Maintenance Hemodialysis: A Theoretical Exploration using Partial Least Squares Structural Equation Modeling. International Journal of Environmental Research and Public Health. 2020; 17(20):7479. https://doi.org/10.3390/ijerph17207479
Chicago/Turabian StyleLim, Jun-Hao, Karuthan Chinna, Pramod Khosla, Tilakavati Karupaiah, and Zulfitri Azuan Mat Daud. 2020. "Understanding How Nutrition Literacy Links to Dietary Adherence in Patients Undergoing Maintenance Hemodialysis: A Theoretical Exploration using Partial Least Squares Structural Equation Modeling" International Journal of Environmental Research and Public Health 17, no. 20: 7479. https://doi.org/10.3390/ijerph17207479
APA StyleLim, J. -H., Chinna, K., Khosla, P., Karupaiah, T., & Daud, Z. A. M. (2020). Understanding How Nutrition Literacy Links to Dietary Adherence in Patients Undergoing Maintenance Hemodialysis: A Theoretical Exploration using Partial Least Squares Structural Equation Modeling. International Journal of Environmental Research and Public Health, 17(20), 7479. https://doi.org/10.3390/ijerph17207479