The Relationship between Low 25-Hydroxyvitamin D and Cardio-Metabolic Risk Factors among Ellisras Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Area
2.1.1. Sample
2.1.2. Anthropometric Measurements
2.1.3. Blood and Pulse Pressure
2.1.4. Biochemical Analysis
2.1.5. Statistical Analysis
3. Results
3.1. Characteristics of the Sample Size
3.2. The Relationship between Low 25(OH)D and Cardio-Metabolic Risk Factors by Correlation
3.3. The Relationship between Low 25(OH)D and Cardio-Metabolic Risk Factors by Linear Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Ibero-Baraibar, I.; Navas-Carretero, S.; Abete, I.; Martinez, J.A.; Zulet, M.A. Increases in plasma 25 (OH) D levels are related to improvements in body composition and blood pressure in middle-aged subjects after a weight loss intervention: Longitudinal study. Clin. Nutr. 2015, 34, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naderpoor, N.; de Courten, M.P.; Scragg, R.; de Courten, B. 25-hydroxyvitamin D is associated with adiposity and cardiometabolic risk factors in a predominantly vitamin D-deficient and overweight/obese but otherwise healthy cohort. J. Steroid Biochem. Mol. Biol. 2017, 173, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Mozos, I.; Marginean, O. Links between Vitamin D Deficiency and Cardiovascular Diseases. Biomed. Res. Int. 2015, 2015, 109275. [Google Scholar] [CrossRef] [PubMed]
- Al Mheid, I.; Patel, R.S.; Tangpricha, V.; Quyyumi, A.A. Vitamin D and cardiovascular disease: Is the evidence solid? Eur. Heart J. 2013, 34, 3691–3698. [Google Scholar] [CrossRef] [Green Version]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [Green Version]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj, F.G.; Josse, R.G.; Lips, P.; Morales-Torres, J. IOF Committee of Scientific Advisors (CSA) Nutrition Working Group. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef] [Green Version]
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef]
- Wahl, D.A.; Cooper, C.; Ebeling, P.R.; Eggersdorfer, M.; Hilger, J.; Hoffmann, K.; Josse, R.; Kanis, J.A.; Mithal, A.; Pierroz, D.D. A global representation of vitamin D status in healthy populations. Arch. Osteoporos. 2012, 7, 155–172. [Google Scholar] [CrossRef]
- Martins, D.; Wolf, M.; Pan, D.; Zadshir, A.; Tareen, N.; Thadhani, R.; Felsenfeld, A.; Levine, B.; Mehrotra, R.; Norris, K. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: Data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2007, 167, 1159–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chonchol, M.; Scragg, R. 25-Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey. Kidney Int. 2007, 71, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barengolts, E. Vitamin D role and use in prediabetes. Endocr. Pract. 2010, 16, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.; Ekwaru, J.; Setayeshgar, S.; Veugelers, P. The effect of changing serum 25-hydroxyvitamin D concentrations on the metabolic syndrome: A longitudinal analysis of participants of a preventive health program. Nutrients 2015, 7, 7271–7284. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.M.; Ekwaru, J.P.; Loehr, S.A.; Veugelers, P.J. The relationship of serum 25-hydroxyvitamin D and insulin resistance among nondiabetic Canadians: A longitudinal analysis of participants of a preventive health program. PLoS ONE 2015, 10, e0141081. [Google Scholar] [CrossRef]
- Deleskog, A.; Hilding, A.; Brismar, K.; Hamsten, A.; Efendic, S.; Östenson, C.G. Low serum 25-hydroxyvitamin D level predicts progression to type 2 diabetes in individuals with prediabetes but not with normal glucose tolerance. Diabetologia 2012, 55, 1668–1678. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef] [Green Version]
- Arunabh, S.; Pollack, S.; Yeh, J.; Aloa, J.F. Body fat content and 25-hydroxyvitamin D levels in healthy women. J. Clin. Endocrinol. Metab. 2003, 88, 157–161. [Google Scholar] [CrossRef]
- Sekgala, M.; Mchiza, Z.; Parker, W.A.; Monyeki, K. Dietary fibre intake and metabolic syndrome risk factors among young South African adults. Nutrients 2018, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Sebati, B.; Monyeki, K.; Kemper, H.C.G.; Sekgala, M.D.; Mphekgwana, P. Anthropometric indices for predicting cardiovascular risk factors: Ellisras longitudinal study. Am. J. Hum. Biol. 2019, 31, e23293. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, E.; Jeffery, A.; Mackay, S.; Gallocher, R.; Forge, Y.H.; Chipps, C. South. Africa Survey; South African Institute of Race Relations: Johannesburg, South African, 1996. [Google Scholar]
- Bradshaw, D.; Steyn, K. Poverty and Chronic Disease in South. Africa: Technical Report; Medical Research Council: Cape Town, South African, 2001; pp. 22–41. [Google Scholar]
- Statistics South Africa. Cause of Death in South. Africa 1997–2001: Advance Release of Records of Death; Statistics South Africa: Pretoria, South African, 2002. [Google Scholar]
- Monyeki, K.D.; Cameron, N.; Getz, B. Growth and nutritional status of rural South African children 3–10 years old: The Ellisras growth study. Am. J. Hum. Biol. Off. J. Hum. Biol. Assoc. 2000, 12, 42–49. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW press: Randwick, Australia, 1996. [Google Scholar]
- National High Blood Pressure Education Program. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High. Blood Pressure in Children and Adolescents (No. 5); US Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute, National High Blood Pressure Education Program: Washington, DC, USA, 2004.
- Barrett, S.C.; Huffman, F.G.; Johnson, P. Validation of finger-prick testing of fasting blood glucose, total cholesterol, and HbA1c in adolescents. Point Care 2011, 10, 51–58. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Sowers, M.; Bell, C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2813–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Ajani, U.A.; McGuire, L.C.; Liu, S. Concentrations of serum vitamin D and the metabolic syndrome among US adults. Diabetes Care 2005, 28, 228–1230. [Google Scholar]
- Reis, J.P.; Von Mühlen, D.; Kritz-Silverstein, D.; Wingard, D.L.; Barrett-Connor, E. Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community-dwelling older adults. Diabetes Care 2007, 30, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teegarden, D.; Donkin, S.S. Vitamin D: Emerging new roles in insulin sensitivity. Nutr. Res. 2009, 22, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Kruger, I.M.; Kruger, M.C.; Doak, C.M.; Schutte, A.E.; Huisman, H.W.; Van Rooyen, J.M.; Schutte, R.; Malan, L.; Malan, N.T.; Fourie, C.M.; et al. The association of 25 (OH) D with blood pressure, pulse pressure and carotid-radial pulse wave velocity in African women. PLoS ONE 2013, 8, e54554. [Google Scholar] [CrossRef] [Green Version]
- Mehta, V.; Agarwal, S. Does Vitamin D Deficiency lead to Hypertension? Cureus 2017, 9, e1038. [Google Scholar] [CrossRef] [Green Version]
- Purow, J.I.; Sokol, S.I. Vitamin D and Cardiovascular Disease: The Final Chapter? Vitamin, D.D., Fedotova, J., Eds.; Intechopen: London, UK, 2019. [Google Scholar]
- Sowers, J.R. Obesity as a cardiovascular risk factor. Am. J. Med. 2003, 115, 37–41. [Google Scholar] [CrossRef]
- Shafinaz, I.S.; Moy, F.M. Vitamin D level and its association with adiposity among multi-ethnic adults in Kuala Lumpur, Malaysia: A cross sectional study. BMC Public Health 2016, 16, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.W.L.; Pang, M.Y.C.; Siu, P.M.F.; Lai, C.K.Y.; Woo, J.; Collins, A.R.; Benzie, I.F. Vitamin D status and cardiometabolic risk factors in young adults in Hong Kong: Associations and implications. Asia Pac. J. Clin. Nutr. 2018, 27, 231–237. [Google Scholar] [PubMed]
- Rahman, S.A.; Chee, W.S.S.; Yassin, Z.; Chan, S.P. Vitamin D status among postmenopausal Malaysian women. Asia Pac. J. Clin. Nutr. 2004, 13, 225–260. [Google Scholar]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef] [PubMed]
All | Males (N = 304) | Females (N = 327) | |||
---|---|---|---|---|---|
Variables | N | M(SD) | M(SD) | M(SD) | p-Value |
Age (years) | 631 | 25.57 (1.98) | 25.46 (1.93) | 25.67 (2.03) | 0.297 |
25(OH)D # (ng/mL) | 631 | 0.43 (0.00–1.43) | 0.46 (0.00 1.41) | 0.43 (0.00–1.44) | 0.286 |
LDL (mmol/L) | 631 | 1.99 (0.92) | 1.77 (0.87) | 2.22 (0.91) | 0.000 * |
HDL (mmol/L) | 631 | 1.15 (0.34) | 1.20 (0.37) | 1.09 (0.30) | 0.000 * |
Total cholesterol (mmol/L) | 631 | 4.15 (1.04) | 4.03 (0.94) | 4.27 (1.11) | 0.004 * |
Triglyceride # (mmol/L) | 631 | 0.83 (0.63–1.19) | 0.87 (0.65–1.22) | 0.78 (0.61–1.18) | 0.028 * |
Fasting blood glucose (mmol/L) | 631 | 5.52 (1.28) | 5.59 (0.88) | 5.43 (1.56) | 0.165 |
SBP (mmHg) | 631 | 119.83 (13.06) | 125.89 (10.17) | 114.13 (10.85) | 0.000 * |
DBP (mmHg) | 631 | 70.18 (9.81) | 71.39 (10.17) | 69.04 (9.32) | 0.001 * |
Pulse pressure (mmHg) | 631 | 76.11 (13.38) | 71.39 (12.83) | 81.29 (11.76) | 0.000 * |
BMI (kg/m2) | 631 | 24.62 (13.15) | 24.77 (12.22) | 24.91 (15.43) | 0.000 * |
WC (cm) | 631 | 78.74 (12.75) | 75.07 (9.50) | 82.20 (14.36) | 0.000 * |
Ratios | |||||
TG/HDL | 631 | 0.79 (0.54–1.10) | 0.78 (0.52–1.08) | 0.80 (0.55–1.13) | 0.405 |
TC/HDL | 631 | 3.80 (1.19) | 3.55 (1.27) | 4.03 1.05) | 0.000 * |
LDL/HDL | 631 | 2.61 (1.14) | 2.36 (1.22) | 2.84 (1.00) | 0.000 * |
The prevalence of 25(OH)D status | |||||
Cut off point | N(%) | ||||
<12 ng/mL | 706 (96.6) |
Variables | Spearman Correlation Coefficients (p-Value) | Partial Correlation Coefficients 1 (p-Value) [AGE] | Partial Correlation Coefficients 2 (p-Value) [SEX] |
---|---|---|---|
LDL (mmol/L) | 0.042 (0.298) | 0.043 (0.374) | 0.052 (0.291) |
HDL (mmol/L) | 0.050 (0.206) | 0.078 (0.110) | 0.073 (0.135) |
Total cholesterol (mmol/L) | 0.054 (0.179) | 0.065 (0.183) | 0.069 (0.156) |
Triglyceride (mmol/L) | 0.12 (0.062) | 0.01 (0.839) | 0.01 (0.841) |
Fasting blood glucose (mmol/L) | 0.015 (0.696) | 0.010 (0.836) | 0.012 (0.798) |
SBP (mmHg) | −0.015 (0.682) | 0.020 (0.689) | 0.008 (0.875) |
DBP (mmHg) | 0.067 (0.070) | 0.031 (0.528) | 0.027 (0.580) |
Pulse pressure (mmHg) | 0.026 (0.477) | −0.027 (0.578) | −0.016 (0.742) |
BMI (kg/m2) | 0.022 (0.546) | 0.050 (0.307) | 0.058 (0.236) |
WC (cm) | 0.096 (0.010) * | 0.053 (0.277) | 0.059 (0.230) |
Ratios | |||
TG/HDL | 0.03 (0.472) | −0.02 (0.562) | −0.04 (0.370) |
TC/HDL | −0.07 (0.073) | −0.01 (0.785) | −0.01 (0.736) |
LDL/HDL | −0.03 (0.489) | −0.02 (0.566) | −0.04 (0.368) |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value |
LDL (mmol/L) | 0.059 (−0.045–0.215) | 0.201 | 0.051 (0.057–0.201) | 0.272 | 0.051 (−0.057–0.202) | 0.273 | 0.049 (0.0059–0.199) | 0.287 |
HDL (mmol/L) | 0.072 (−0.011–0.084) | 0.129 | 0.074 (−0.004–0.031) | 0.121 | 0.075 (−0.003–0.032) | 0.114 | 0.075 (−0.003–0.032) | 0.114 |
Total cholesterol (mmol/L) | 0.074 (−0.032–0.270) | 0.121 | 0.062 (−0.048–0.248) | 0.186 | 0.058 (−0.053–0.242) | 0.209 | 0.057 (−0.055–0.239) | 0.220 |
Triglyceride (mmol/L) | 0.005 (−0.031–0.035) | 0.918 | −0.011 (−0.036–0.028) | 0.820 | −0.011 (−0.035–0.028) | 0.829 | −0.004 (−0.034–0.031) | 0.931 |
Fasting blood glucose (mmol/L) | 0.031 (−0.007–0.015) | 0.503 | 0.025 (−0.008–0.014) | 0.583 | 0.025 (−0.008–0.014) | 0.584 | 0.024 (−0.008–0.014) | 0.598 |
SBP (mmHg) | −0.009 (−1.836–1.445) | 0.815 | −0.019 (−1.994–1.212) | 0.632 | −0.023 (−2.064–1.111) | 0.556 | −0.024 (−2.082–1.091) | 0.540 |
DBP (mmHg) | 0.027 (−0.943–1.795) | 0.541 | 0.023 (−0.990–1.729) | 0.594 | 0.020 (−1.039–1.669) | 0.648 | 0.020 (−1.044–1.666) | 0.652 |
Pulse pressure (mmHg) | 0.013 (−1.411–1.981) | 0.732 | 0.016 (−1.354–2.041) | 0.691 | 0.011 (−1.454–1.937) | 0.779 | 0.013 (−1.420–1.964) | 0.752 |
Ratios | ||||||||
TC/HDL | −0.10 (−0.33–0.13) | 0.414 | −0.10 (−0.33–0.13) | 0.414 | −0.15 (−0.38 0.09) | 0.224 | −0.15 (−0.38–0.09) | 0.224 |
TG/HDL | −0.05(−0.48–0.38) | 0.820 | −0.05 (−0.48–0.38) | 0.819 | −0.14 (−0.58– 0.30) | 0.521 | −0.14 (−0.58–0.30) | 0.521 |
LDL/HDL | −0.10(−0.34–0.14) | 0.408 | −0.10 (−0.34–0.14) | 0.407 | −0.15 (−0.39–0.10) | 0.232 | −0.15 (−0.39–0.10) | 0.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebati, B.; Monyeki, K.; Monyeki, S. The Relationship between Low 25-Hydroxyvitamin D and Cardio-Metabolic Risk Factors among Ellisras Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 7626. https://doi.org/10.3390/ijerph17207626
Sebati B, Monyeki K, Monyeki S. The Relationship between Low 25-Hydroxyvitamin D and Cardio-Metabolic Risk Factors among Ellisras Young Adults. International Journal of Environmental Research and Public Health. 2020; 17(20):7626. https://doi.org/10.3390/ijerph17207626
Chicago/Turabian StyleSebati, Betty, Kotsedi Monyeki, and Susan Monyeki. 2020. "The Relationship between Low 25-Hydroxyvitamin D and Cardio-Metabolic Risk Factors among Ellisras Young Adults" International Journal of Environmental Research and Public Health 17, no. 20: 7626. https://doi.org/10.3390/ijerph17207626
APA StyleSebati, B., Monyeki, K., & Monyeki, S. (2020). The Relationship between Low 25-Hydroxyvitamin D and Cardio-Metabolic Risk Factors among Ellisras Young Adults. International Journal of Environmental Research and Public Health, 17(20), 7626. https://doi.org/10.3390/ijerph17207626