Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.2.1. Anthropometric Measurement
2.2.2. Blood Pressure and Pulse Rate (PR)
2.2.3. Fasting Blood Sample
2.2.4. Fasting Blood Glucose (FBG) and Insulin Levels
2.2.5. Total Cholesterol
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrade, M.D.; De Freitas, M.C.P.; Sakumoto, A.M.; Vieira, V.L.; De Andrade, S.C.; Pappiani, C.; Damasceno, N.R.T. Association of the conicity index with diabetes and hypertension in Brazilian women. Arch. Endocrinol. Metab. 2016, 60, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization Expert Consultation. Appropriate body-Mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Chang, Y.; Guo, X.; Chen, Y.; Guo, L.; Li, Z.; Yu, S.; Yang, H.; Sun, Y. A body shape index and body roundness index: Two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health 2015, 15, 794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krakauer, N.Y.; Krakauer, J. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- He, S.; Chen, X. Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PLoS ONE 2013, 8, e50573. [Google Scholar] [CrossRef] [PubMed]
- Maessen, M.F.; Eijsvogels, T.M.; Verheggen, R.J.; Hopman, M.T.; Verbeek, A.L.; De Vegt, F. Entering a New Era of Body Indices: The Feasibility of a Body Shape Index and Body Roundness Index to Identify Cardiovascular Health Status. PLoS ONE 2014, 9, e107212. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Pitanga, F.J.G.; Lessa, I. Anthropometric indexes of obesity as an instrument of screening for high coronary risk in adults in the city of Salvador-Bahia. Arq. Bras. Cardiol. 2005, 85, 1–5. [Google Scholar]
- Sowmya, S.; Thomas, T.; Bharathi, A.V.; Sambashivaiah, S. A Body Shape Index and Heart Rate Variability in Healthy Indians with Low Body Mass Index. J. Nutr. Metab. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Monyeki, K.; Cameron, N.; Getz, B. Growth and nutritional status of rural South African children 3–10 years old: The Ellisras growth study. Am. J. Hum. Biol. 2000, 12, 42–49. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. (Eds.) Anthropometric, a Textbook of Body Measurement for Sports and Health Courses; University of New South Wales Press: Sydney, Australia, 1996. [Google Scholar]
- Moon, J.H.; Koo, B.K.; Moon, M.K. Optimal high-Density lipoprotein cholesterol cut-off for predicting cardiovascular disease: Comparison of the Korean and US National Health and Nutrition Examination Surveys. J. Clin. Lipidol. 2015, 9, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, M.; Osaka, T.; Numba, Y.; Inoue, S.; Yoshiike, N.; Zimmet, P. Criteria and classification of obesity in Japan and Asia-Oceania. Asia Pac. J. Clin. Nutr. 2002, 11, 732–737. [Google Scholar] [CrossRef]
- Bertoli, S.; Leone, A.; Krakauer, N.Y.; Bedogni, G.; Vanzulli, A.; Redaelli, V.I.; De Amicis, R.; Vignati, L.; Krakauer, J.C.; Battezzati, A. Association of Body Shape Index (ABSI) with cardio-Metabolic risk factors: A cross-sectional study of 6081 Caucasian adults. PLoS ONE 2017, 12, e0185013. [Google Scholar] [CrossRef] [Green Version]
- Antikainen, R.L.; Moltchanov, V.A.; Chukwuma, C.; Kuulasmaa, K.A.; Marques-Vidal, P.; Sans, S.; Wilhelmsen, L.; Tuomilehto, J.O. Trends in the prevalence, awareness, treatment and control of hypertension: The WHO MONICA Project. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 13–29. [Google Scholar]
- Earl, S.F. Prevalence of the Metabolic Syndrome Defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005, 28, 2745–2749. [Google Scholar]
- Mameli, C.; Krakauer, N.Y.; Krakauer, J.C.; Bosetti, A.; Ferrari, C.M.; Moiana, N.; Schneider, L.; Borsani, B.; Genoni, T.; Zuccotti, G. The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents. PLoS ONE 2018, 13, e0190426. [Google Scholar] [CrossRef] [Green Version]
- Puoane, T.; Steyn, K.; Bradshaw, D.; Laubscher, R.; Fourie, J.; Lambert, V.; Mbananga, N. Obesity in South Africa: The South African Demographic and Health Survey. Obes. Res. 2002, 10, 1038–1048. [Google Scholar] [CrossRef] [Green Version]
- Case, A.C.; Menendez, A. Sex differences in obesity rates in poor countries: Evidence from South Africa. Econ. Hum. Biol. 2009, 7, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekgala, M.D.; Mchiza, Z.J.; Parker, W.-A.; Monyeki, K.D. Dietary Fiber Intake and Metabolic Syndrome Risk Factors among Young South African Adults. Nutrients 2018, 10, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenner, M.M.; Stachenfeld, N.S. Blood pressure and water regulation: Understanding sex hormone effects within and between men and women. J. Physiol. 2012, 590, 5949–5961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Writing Group Members; Roger, V.L.; Go, A.S.; Lloyd-Jones, D.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; et al. Heart Disease and Stroke Statistics—2012 Update: A Report From the American Heart Association. Circulation 2012, 125, e2. [Google Scholar] [CrossRef]
- Shidfar, F.; Alborzi, F.; Salehi, M.; Nojomi, M.; Farzad, S.; Fatemeh, A. Association of waist circumference, body mass index and conicity index with cardiovascular risk factors in postmenopausal women. CVJA 2012, 23, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Hu, D.; Chen, J. Association between obesity indices and blood pressure or hypertension: Which index is the best? Public Health Nutr. 2009, 12, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Snijder, M.B.; Nicolaou, M.; Van Valkengoed, I.G.; Brewster, L.M.; Stronks, K. Newly proposed body adiposity index (bai) by Bergman et al. is not strongly related to cardiovascular health risk. J. Obes. 2012, 20, 1138–1139. [Google Scholar] [CrossRef]
- Lim, S.M.; Choi, D.P.; Rhee, Y.; Kim, H.C. Association between Obesity Indices and Insulin Resistance among Healthy Korean Adolescents: The JS High School Study. PLoS ONE 2015, 10, e0125238. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. Expansion of waist circumference in the medical literature: Potential clinical application of a body shape index. J. Obes. Weight Loss Ther. 2014, 4, 2. [Google Scholar] [CrossRef]
- Fujita, M.; Sato, Y.; Nagashima, K.; Takahashi, S.; Hata, A. Predictive Power of a Body Shape Index for Development of Diabetes, Hypertension, and Dyslipidemia in Japanese Adults: A Retrospective Cohort Study. PLoS ONE 2015, 10, e0128972. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, W.; Cheung, Y.B. Body shape indices and cardio-metabolic risk in adolescents. Ann. Hum. Biol. 2015, 42, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Haghighatdoost, F.; Sarrafzadegan, N.; Mohammadifard, N.; Asgary, S.; Boshtam, M.; Azadbakht, L. Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition 2014, 30, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Sebati, B.; Monyeki, K.; Kemper, H.C.G.; Sekgala, M.D.; Mphekgwana, P. Anthropometric indices for predicting cardiovascular risk factors: Ellisras longitudinal study. Am. J. Hum. Biol. 2019, 31, e23293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momesso, D.P.; Bussade, I.; Lima, G.A.; Fonseca, L.P.; Russo, L.A.; Kupfer, R. Body composition, metabolic syndrome and insulin resistance in type 1 diabetes mellitus. Arq. Bras. Endocrinol. Metabol. 2011, 55, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciolac, E.G.; Bocchi, E.A.; Bortolotto, L.A.; Carvalho, V.; Greve, J.M.; Guimarães, G.V. Effect of high intensity aerobic interval training vs. Moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive woman at high familial risk for hypertension. Hypertens. Res. 2010, 33, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Mujezinović, A.; Čalkić, L.; Hasanica, N.; Tandir, S. Tobacco and alcohol usage as risk factors of non-communicable diseases among students of Zenica University (Bosnia and Herzegovina). Med. Glas. (Zenica) 2018, 15, 81–86. [Google Scholar] [PubMed]
SBP (mmHg) M (SD) | DBP (mmHg) M (SD) | PR (bpm) M (SD) | Insulin (mmol/L) M (SD) | C Index M (SD) | ABSI M (SD) | BRI (SD) | BMI (kg/m2) M (SD) | TC (mmol/L) M (SD) | Glucose (mmol/L) M (SD) | HDL-C (mmol/L) M (SD) | TG (mmol/L) M (SD) | HOMA-IR M (SD) | HOMA-β M (SD) | LDL-C (mmol/L) M (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Males | 125.91 (12.48) ** | 71.44 (10.24) * | 70.36 (12.90) ** | 7.75 (9.00) * | 1.12 (0.08) ** | 1.29 (0.11) ** | 6.05 (3.96) ** | 23.67 (8.74) ** | 2.992 (4.67) | 5.45 (0.87) | 1.20 (0.37) | 1.06 (0.65) | 2.29 (3.37) | 24.31 (30.14) ** | 2.35 (0.78) * |
Females | 114.23 (10.84) ** | 69.11 (9.39) * | 81.75 (11.79) ** | 10.86 (14.04) * | 1.16 (0.10) ** | 1.21 (0.11) ** | 8.86 (7.99) ** | 25.66 (17.45) ** | 3.167 (5.16) | 5.62 (1.55) | 1.09 (0.30) | 0.96 (0.51) | 2.48 (3.45) | 35.49 (47.33) ** | 2.73 (0.91) * |
Risk Factors | BRI | ABSI | Conicity Index | |||
---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | |
SBP | −0.009 | 0.076 | −0.035 | −0.071 | −0.061 | 0.011 |
DBP | 0.031 | 0.072 | 0.001 | −0.071 | −0.004 | 0.011 |
PR | 0.078 | −0.040 | 0.148 ** | 0.053 | 0.167 ** | 0.018 |
Glucose | 0.139 | 0.000 | 0.084 | −0.021 | 0.141 ** | −0.185 ** |
Insulin | 0.252 ** | 0.255 ** | 0.036 | 0.017 | 0.143 ** | 0.185 ** |
HOMA-IR | 0.140 | −0.040 | 0.273 | −0.020 | 0.093 | −0.018 |
HOMA-β | 0.250 ** | 0.245 ** | 0.021 | 0.012 | 0.135 ** | 0.179 ** |
TC | 0.058 | 0.220 ** | 0.061 | −0.023 | 0.060 | 0.125 * |
TG | 0.310 ** | 0.216 ** | −0.109 * | 0.120 * | 0.253 ** | 0.237 ** |
HDL-C | −0.196 ** | 0.015 | −0.063 | 0.030 | −0.253 ** | 0.023 |
LDL-C | 0.033 | 0.113 * | −0.043 | 0.152 ** | 0.003 | 0.183 ** |
BMI | 0.144 ** | −0.001 | 0.091 | −0.021 | 0.150 ** | 0.016 |
Risk Factors | Unadjusted | Adjusted for Age and Gender | ||||||
---|---|---|---|---|---|---|---|---|
β | p-Value | 95% CI | β | p-Value | 95% CI | |||
Conicity Index | ||||||||
SBP | −0.075 | 0.062 | 0.000 | −0.073 | −0.033 | 0.417 | −0.054 | 0.022 |
DBP | −0.051 | 0.199 | −0.079 | 0.017 | −0.033 | 0.424 | −0.069 | 0.029 |
PR | 0.099 | 0.013 * | 0.017 | 0.143 | 0.081 | 0.048 * | 0.000 | 0.130 |
Glucose | 0.052 | 0.190 | −0.021 | 0.106 | 0.046 | 0.267 | −0.028 | 0.102 |
Insulin | 0.149 | <0.001 ** | 0.286 | 0.908 | 0.110 | 0.007 * | 0.123 | 0.757 |
HOMA−IR | 0.048 | 0.236 | −0.132 | 0.536 | 0.054 | 0.195 | −0.117 | 0.573 |
HOMA−β | 0.142 | <0.001 ** | 0.259 | 0.891 | 0.103 | 0.011 * | 0.096 | 0.740 |
TG | 0.146 | <0.001 ** | 0.147 | 0.486 | 0.143 | <0.001 ** | 0.138 | 0.482 |
HDL−C | −0.070 | 0.081 | −0.184 | 0.011 | −0.036 | 0.381 | −0.144 | 0.055 |
LDL−C | 0.125 | 0.002 * | 0.065 | 0.284 | 0.081 | 0.044 * | 0.003 | 0.225 |
TC | 0.073 | 0.068 | −0.006 | 0.166 | 0.040 | 0.334 | −0.045 | 0.132 |
BMI | 0.063 | 0.116 | −0.019 | 0.175 | 0.049 | 0.238 | −0.040 | 0.161 |
ABSI | ||||||||
SBP | −0.012 | 0.770 | −0.027 | 0.037 | 0.059 | 0.161 | −0.058 | 0.010 |
DBP | 0.032 | 0.423 | −0.058 | 0.024 | −0.067 | 0.119 | −0.078 | 0.009 |
PR | −0.021 | 0.593 | −0.039 | 0.069 | 0.081 | 0.056 | −0.001 | 0.113 |
Glucose | 0.008 | 0.835 | −0.049 | 0.060 | 0.033 | 0.443 | −0.035 | 0.081 |
Insulin | −0.044 | 0.271 | −0.421 | 0.118 | 0.021 | 0.613 | −0.210 | 0.356 |
HOMA−IR | −0.004 | 0.922 | −0.273 | 0.301 | 0.022 | 0.612 | −0.227 | 0.385 |
HOMA−β | −0.047 | 0.244 | −0.435 | 0.111 | 0.016 | 0.709 | −0.232 | 0.341 |
TG | 0.090 | 0.024 * | 0.022 | 0.314 | 0.061 | 0.149 | −0.041 | 0.267 |
HDL−C | 0.057 | 0.152 | −0.023 | 0.145 | 0.005 | 0.912 | −0.083 | 0.093 |
LDL−C | −0.044 | 0.272 | −0.148 | 0.042 | 0.040 | 0.335 | −0.050 | 0.147 |
TC | −0.049 | 0.221 | −0.120 | 0.028 | −0.024 | 0.572 | −0.101 | 0.056 |
BMI | −0.001 | 0.986 | −0.084 | 0.083 | 0.031 | 0.470 | −0.056 | 0.122 |
BRI | ||||||||
SBP | 0.028 | 0.481 | −0.001 | 0.000 | 0.019 | 0.642 | 0.000 | 0.001 |
DBP | 0.113 | 0.005 * | 0.000 | 0.002 | 0.142 | 0.001 * | 0.001 | .002 |
PR | 0.055 | 0.169 | 0.000 | 0.002 | 0.028 | 0.488 | −0.001 | 0.001 |
Glucose | 0.076 | 0.058 | 0.000 | 0.002 | 0.068 | 0.097 | 0.000 | 0.002 |
Insulin | 0.152 | <0.001 ** | 0.005 | 0.014 | 0.113 | 0.005 * | 0.002 | 0.012 |
HOMA−IR | 0.008 | 0.848 | −0.006 | 0.005 | 0.010 | 0.814 | −0.006 | 0.005 |
HOMA−β | 0.142 | <0.001 ** | 0.004 | 0.013 | 0.102 | 0.012 * | 0.001 | 0.011 |
TG | 0.106 | 0.008 * | 0.001 | 0.006 | 0.112 | 0.006 * | 0.001 | 0.006 |
HDL−C | −0.045 | 0.260 | −0.002 | 0.001 | −0.007 | 0.859 | −0.002 | 0.001 |
LDL−C | 0.091 | 0.023 * | 0.000 | 0.004 | 0.040 | 0.315 | −0.001 | 0.003 |
TC | 0.038 | 0.001 * | 0.001 | 0.004 | 0.112 | 0.006 * | 0.001 | 0.003 |
BMI | 0.066 | 0.100 | 0.000 | 0.003 | 0.050 | 0.225 | −0.001 | 0.002 |
Risk Factors | Unadjusted | Adjusted for Age and Gender | ||||||
---|---|---|---|---|---|---|---|---|
OR | p-Value | 95% CI | OR | p-Value | 95% CI | |||
T2M | ||||||||
ABSI | 1.168 | 0.668 | 0.574 | 2.380 | 1.220 | 0.587 | 0.596 | 2.498 |
BRI | 1.645 | 0.182 | 0.792 | 3.419 | 1.601 | 0.213 | 0.764 | 3.358 |
Conicity Index | 0.935 | 0.1841 | 0.483 | 1.808 | 0.891 | 0.737 | 0.452 | 1.754 |
Dyslipidaemia | ||||||||
ABSI | 0.831 | 0.654 | 0.390 | 1.806 | 1.013 | 0.975 | 0.464 | 2.207 |
BRI | 2.721 | 0.007 * | 1.307 | 5.665 | 2.138 | 0.047 * | 1.010 | 4.526 |
Conicity Index | 1.945 | 0.048 * | 1.007 | 3.757 | 1.391 | 0.342 | 0.704 | 2.748 |
HT | ||||||||
ABSI | 2.306 | 0.102 | 0.846 | 6.285 | 1.596 | 0.377 | 0.566 | 4.502 |
BRI | 0.801 | 0.769 | 0.185 | 3.462 | 1.568 | 0.568 | 0.332 | 7.459 |
Conicity Index | 1.808 | 0.620 | 0.174 | 18.807 | 3.985 | 0.029 * | 1.395 | 4.522 |
IR | ||||||||
ABSI | 0.434 | 0.595 | 0.020 | 9.404 | 0.881 | 0.942 | 0.029 | 26.659 |
BRI | 1.028 | 0.071 | 0.998 | 1.058 | 1.023 | 0.135 | 0.993 | 1.054 |
Conicity Index | 7.761 | 0.001 ** | 5.783 | 96.442 | 4.646 | 0.007 * | 2.792 | 74.331 |
Beta−cell dysfunction | ||||||||
ABSI | 1.855 | 0.688 | 0.091 | 37.784 | 2.336 | 0.600 | 0.098 | 55.554 |
BRI | 1.104 | 0.143 | 0.967 | 1.260 | 1.117 | 0.141 | 0.091 | 1.294 |
Conicity Index | 4.418 | 0.101 | 0.594 | 34.652 | 5.722 | 0.103 | 0.575 | 43.150 |
Underweight | ||||||||
ABSI | 6.537 | <0.001 ** | 7.211 | 10.746 | 6.533 | 0.002 * | 4.414 | 85.746 |
BRI | 0.201 | <0.001 ** | 0.127 | 0.316 | 1.600 | 0.157 | 0.834 | 3.067 |
Conicity Index | 0.023 | <0.001 ** | 0.251 | 0.433 | 0.031 | <0.001 ** | 0.411 | 0.612 |
Obesity | ||||||||
ABSI | 0.019 | <0.021 * | 0.004 | 0.095 | 0.123 | 0.016 * | 0.022 | 0.675 |
BRI | 3.607 | <0.001 ** | 2.911 | 4.471 | 3.557 | <0.001 ** | 2.841 | 4.454 |
Conicity Index | 1.058 | <0.001 ** | 2. 715 | 4.119 | 1.271 | <0.001 ** | 0.672 | 1.099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkwana, M.R.; Monyeki, K.D.; Lebelo, S.L. Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 281. https://doi.org/10.3390/ijerph18010281
Nkwana MR, Monyeki KD, Lebelo SL. Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. International Journal of Environmental Research and Public Health. 2021; 18(1):281. https://doi.org/10.3390/ijerph18010281
Chicago/Turabian StyleNkwana, Mbelege Rosina, Kotsedi Daniel Monyeki, and Sogolo Lucky Lebelo. 2021. "Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults" International Journal of Environmental Research and Public Health 18, no. 1: 281. https://doi.org/10.3390/ijerph18010281
APA StyleNkwana, M. R., Monyeki, K. D., & Lebelo, S. L. (2021). Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. International Journal of Environmental Research and Public Health, 18(1), 281. https://doi.org/10.3390/ijerph18010281