Influence of Connection Type and Platform Diameter on Titanium Dental Implants Fatigue: Non-Axial Loading Cyclic Test Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dental Implants
- -
- Group I (n = 19): Surgimplant CE: titanium grade 5 dental implant with hexagon external connection (platform: 3.5 mm, length: 12 mm) (Galimplant SLU, Sarria, Lugo, Spain)
- -
- Group II (n = 18): Surgimplant CI Double Hexagon: titanium grade 5 dental implant with double hexagon internal connection (platform: 3.5 mm, length: 12 mm) (Galimplant SLU, Sarria, Lugo, Spain)
- -
- Group III (n = 17): Surgimplant CI Octagonal: titanium grade 5 dental implant with octagonal internal connection (platform: 4.0 mm, length: 12 mm) (Galimplant SLU, Sarria, Lugo, Spain).
2.2. Fatigue Test
2.3. Scanning Electron Microscopy (SEM) Analysis
2.4. Statistical Analysis
3. Results
3.1. Hexagon External Connection
3.2. Double Hexagon Internal Connection
3.3. Octagonal Internal Connection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, M.I.; Shen, Y.W.; Huang, H.L.; Hsu, J.T.; Fuh, L.J. A retrospective study of implant-abutment connections on crestal bone level. J. Dent. Res. 2013, 92, 202S–207S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanase, R.T.; Preston, J.D. Considerations for screw/cylinder prosthetic components. In Reconstructive and Preprosthetic Oral and Maxillofacial Surgery, 2nd ed.; Fonseca, R., Davis, W.H., Eds.; WB Saunders Co.: Philadelphia, PA, USA, 1995; p. 251. [Google Scholar]
- Pietrabissa, R.; Gionso, L.; Quaglini, V.; Di Martino, E.; Simion, M. An in vitro study on compensation of mismatch of screw versus cement-retained implant supported fixed prostheses. Clin. Oral Implant. Res. 2000, 11, 448–457. [Google Scholar] [CrossRef] [PubMed]
- The Academy of Prosthodontics; The Academy of Prosthodontics Foundation. The Glossary of Prosthodontic Terms, 9th ed.; Elsevier: St. Louis, MO, USA, 2017. [Google Scholar]
- Machado, L.S.; Bonfante, E.A.; Anchieta, R.B.; Yamaguchi, S.; Coelho, P.G. Implant-abutment connection designs for anterior crowns: Reliability and failure modes. Implant Dent. 2013, 22, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, E.O.; Freitas, A.C., Jr.; Bonfante, E.A.; Marotta, L.; Silva, N.R.; Coelho, P.G. Mechanical testing of implant-supported anterior crowns with different implant/abutment connections. Int. J. Oral Maxillofac. Implant. 2013, 28, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppedê, A.R.; Bersani, E.; de Mattos, M.G.; Rodrigues, R.C.; Sartori, I.A.; Ribeiro, R.F. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: An in vitro study. Int. J. Prosthodont. 2009, 22, 283–286. [Google Scholar] [PubMed]
- Delgado-Ruiz, R.; Silvente, A.N.; Romanos, G. Deformation of the internal connection of narrow implants after insertion in dense bone: An in vitro study. Materials 2019, 12, 1833. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.G.; Maia, M.L.C.; Scherrer, S.S.; Cardoso, A.C.; Wiskott, H.W.A. Resistance of three implant-abutment interfaces to fatigue testing. J. Appl. Oral Sci. 2011, 19, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Chowdhary, R.; Kumari, S. Microleakage at the different implant abutment interface: A systematic review. J. Clin. Diagn. Res. 2017, 11, ZE10–ZE15. [Google Scholar] [CrossRef]
- Scarano, A.; Lorusso, C.; Di Giulio, C.; Mazzatenta, A. Evaluation of the sealing capability of the implant healing screw by using real time volatile organic compounds analysis: Internal hexagon versus cone morse. J. Periodontol. 2016, 87, 1492–1498. [Google Scholar] [CrossRef]
- Aboyoussef, H.; Weiner, S.; Ehrenberg, D. Effect of an antirotation resistance form on screw loosening for single implant-supported crowns. J. Prosthet. Dent. 2000, 83, 450–455. [Google Scholar] [CrossRef]
- Teixeira, A.B.; Shimano, A.; Macedo, A.; Valente, M.; dos Reis, A. Influence of torsional strength on different types of dental implant platforms. Implant Dent. 2015, 24, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, A.; Dittmer, M.; Kohorst, P.; Jendras, M.; Borchers, L.; Stiesch, M. Effect of implant-abutment connection design on load bearing capacity and failure mode of implants. J. Prosthodont. 2011, 20, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Huh, Y.H.; Park, C.J.; Cho, L.R. Effect of the coronal wall thickness of dental implants on the screw joint stability in the internal implant-abutment connection. Int. J. Oral Maxillofac. Implant. 2016, 31, 1058–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, K.; Schmelzeisen, R.; Taylor, T.D.; Zabler, S.; Wiest, W.; Fretwurst, T. The impact of force transmission on narrow-body dental implants made of commercially pure titanium and titanium zirconia alloy with a conical implant-abutment connection: An experimental pilot study. Int. J. Oral Maxillofac. Implant. 2016, 31, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco-Ortega, E.; Flichy-Fernández, A.; Punset, M.; Jiménez-Guerra, A.; Manero, J.M.; Gil, J. Fracture and fatigue of titanium narrow dental implants: New trends in order to improve the mechanical response. Materials 2019, 12, 3728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordin, D.; Bergamo, E.T.P.; Fardin, V.P.; Coelho, P.G.; Bonfante, E.A. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. J. Mech. Behav. Biomed. Mater. 2017, 71, 244–249. [Google Scholar] [CrossRef]
- Pérez, R.A.; Gargallo, J.; Altuna, P.; Herrero-Climent, M.; Gil, F.J. Fatigue of narrow dental implants: Influence of the hardening method. Materials 2020, 13, 1429. [Google Scholar] [CrossRef] [Green Version]
- Goonarwardhana, D.; Judge, R.; Palamara, J.; Abduo, J. Effect of implant diameter and alloy on peri-implant strain: An in vitro quantitative strain analysis. Eur. J. Prosthodont. Restor. Dent. 2016, 24, 181–185. [Google Scholar]
- Flanagan, D. Fixed partial dentures and crows supported by small diameter dental implants in compromised sites. Implant Dent. 2008, 17, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Moura, M.B.; Loureiro, K.R.T.; Lima, L.B.; Felippi, C.; Simamoto, P.C., Jr. Biomechanical behavior of three different types of internal tapered connections after cyclic and static loading test: Experimental in vitro. Int. J. Implant Dent. 2020, 6, 41. [Google Scholar] [CrossRef]
- UNE-EN ISO 14801. Available online: http://thmedical.es/wpcontent/uploads/2014/10/F_8_Norma-ISO-14801.pdf (accessed on 4 October 2020).
- Steinebrunner, L.; Wolfart, S.; Bobmann, K.; Kern, M. Implant-abutment interface design affects fatigue and fracture strength of implants. Clin. Oral Implant Res. 2008, 19, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.M.; Nogueira-Filho, G.; Tenenbaum, H.C. Performance of conical abutment (Morse taper) connection implants: A systematic review. J. Biomed. Mater. Res. A 2014, 102, 552–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Geng, J.; Jones, D.; Xu, W. Comparison of the fracture resistance of dental implants with different abutment taper angles. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, H.; Brizuela Velasco, A.; Ríos-Santos, J.-V.; Sánchez Lasheras, F.; Lemos, B.F.; Gil, F.J.; Carvalho, A.; Herrero-Climent, M. Effect of different implant designs on strain and stress distribution under non-axial loading: A three-dimensional finite element analysis. Int. J. Environ. Res. Public Health 2020, 17, 4738. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Puleio, F.; Rizzo, D.; Alibrandi, A.; Lo Giudice, G.; Centofanti, A.; Fiorillo, L.; Di Mauro, D.; Nicita, F. Comparative investigation of cutting devices on bone blocks: An SEM morphological analysis. Appl. Sci. 2019, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Moreno, P.; Fernandez-Jimenez, A.; Avila-Ortiz, G.; Silvestre, F.J.; Hernandez-Cortes, P.; Wang, H.L. Marginal bone loss around implants placed in maxillary native bone or grafted sinuses: A retrospective cohort study. Clin. Oral Implant Res. 2014, 25, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Peñarocha-Diago, M.A.; Flichy-Fernandez, R.; Alonso-Gonzalez, D.; Peñarocha-Oltra, J.; Balaguer-Martinez, M.; Pecharocha-Diago, M. Influence of implant neck design and implant-abutment connection type on peri-implant health: Radiological study. Clin. Oral Implant Res. 2012, 24, 1192–1200. [Google Scholar]
- Spinato, S.; Galindo-Moreno, P.; Bernardello, F.; Zaffe, D. Minimum abutment height to eliminate bone loss: Influence of implant neck design and platform switching. Int. J. Oral Maxillofac. Implant. 2018, 33, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Karl, M.; Kelly, J.R. Evaluation of test protocol variables for dental implant fatigue research. Dent. Mater. 2009, 25, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Shemtov-Yona, K.; Rittel, D.; Levin, L.; Machtei, E.E. Effect of dental implant diameter on fatigue performance. Part I: Mechanical behavior. Clin. Implant Dent. Relat. Res. 2014, 16, 172–177. [Google Scholar] [CrossRef]
- Carneiro, T.A.; Dietrich, L.; Prudente, M.S. Fracture resistance of internal conical and external hexagon: Regular and narrow implant-abutment assemblies. Implant Dent. 2016, 25, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Eskitascioglu, G.; Usumez, A.; Sevimay, M. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J. Prosthet. Dent. 2004, 91, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.J.; Cheong, S.Y.; Han, J.H. Evaluation of design parameters of osseointegrated dental implants using finite elements analysis. J. Oral Rehabil. 2002, 29, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Aparicio, C.; Manero, J.M.; Padrós, A. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants. Int. J. Oral Maxillofac. Implant. 2009, 24, 583–590. [Google Scholar]
- Binon, P.P.; Curtis, D.A. A classification system to measure the implant-abutment microgap. Int. J. Oral Maxillofac. Implant. 2007, 22, 879–885. [Google Scholar]
- Ritcher, E.J. In vivo vertical forces on implants. Int. J. Oral Maxillofac. Implant. 1995, 10, 99–108. [Google Scholar]
- Maeda, Y.; Horisaka, M.; Yagi, K. Biomechanical rationale for a single implant-retained mandibular overdenture: An in vitro study. Clin. Oral Implant. Res. 2008, 19, 271–275. [Google Scholar] [CrossRef]
- Velasco, E.; Monsalve-Guil, L.; Jimenez, A.; Ortiz, I.; Moreno-Muñoz, J.; Nuñez-Marquez, E.; Pegueroles, M.; Perez, R.; Gil, F.J. Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits. J. Oral Investig. 2016, 42, 469–476. [Google Scholar] [CrossRef]
- Tortopidis, D.; Lyons, M.F.; Baxendale, R.H. The variability of bite force measurement between sessions, in different positions within the dental arch. J. Oral Rehabil. 1998, 25, 681–686. [Google Scholar] [CrossRef]
Group | Group I | Group II | Group III |
---|---|---|---|
n | 19 | 18 | 17 |
Connection Type | Hexagon External Connection | Double Hexagon Internal Connection | Octagonal Internal Connection |
Diameter | 3.5 | 3.5 | 4.0 |
Length | 12 | 12 | 12 |
Material | Titanium Grade 5 | Titanium Grade 5 | Titanium Grade 5 |
Implant Type | Minimum Load (N) | Maximum Load (L) | Minimum Cycles | Maximum Cycles | Fatigue Load Limit (FFL) (N) | Nominal Curvature Moment (N.m) |
---|---|---|---|---|---|---|
Hexagon external connection | 190 | 400 | 3074 | 5,000,000 | 190 | 1.045 |
Double hexagon internal connection | 150 | 400 | 1583 | 5,000,000 | 150 | 0.825 |
Octagonal internal connection | 325 | 550 | 3555 | 5,000,000 | 325 | 1.788 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolas-Silvente, A.I.; Velasco-Ortega, E.; Ortiz-Garcia, I.; Jimenez-Guerra, A.; Monsalve-Guil, L.; Ayuso-Montero, R.; Gil, J.; Lopez-Lopez, J. Influence of Connection Type and Platform Diameter on Titanium Dental Implants Fatigue: Non-Axial Loading Cyclic Test Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8988. https://doi.org/10.3390/ijerph17238988
Nicolas-Silvente AI, Velasco-Ortega E, Ortiz-Garcia I, Jimenez-Guerra A, Monsalve-Guil L, Ayuso-Montero R, Gil J, Lopez-Lopez J. Influence of Connection Type and Platform Diameter on Titanium Dental Implants Fatigue: Non-Axial Loading Cyclic Test Analysis. International Journal of Environmental Research and Public Health. 2020; 17(23):8988. https://doi.org/10.3390/ijerph17238988
Chicago/Turabian StyleNicolas-Silvente, Ana I., Eugenio Velasco-Ortega, Ivan Ortiz-Garcia, Alvaro Jimenez-Guerra, Loreto Monsalve-Guil, Raul Ayuso-Montero, Javier Gil, and Jose Lopez-Lopez. 2020. "Influence of Connection Type and Platform Diameter on Titanium Dental Implants Fatigue: Non-Axial Loading Cyclic Test Analysis" International Journal of Environmental Research and Public Health 17, no. 23: 8988. https://doi.org/10.3390/ijerph17238988
APA StyleNicolas-Silvente, A. I., Velasco-Ortega, E., Ortiz-Garcia, I., Jimenez-Guerra, A., Monsalve-Guil, L., Ayuso-Montero, R., Gil, J., & Lopez-Lopez, J. (2020). Influence of Connection Type and Platform Diameter on Titanium Dental Implants Fatigue: Non-Axial Loading Cyclic Test Analysis. International Journal of Environmental Research and Public Health, 17(23), 8988. https://doi.org/10.3390/ijerph17238988