The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Somatic Measurements and Stress Tests
2.4. Statistical Methods
3. Results
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Čepulėnas, A.; Bružas, V.; Mockus, P. Impact of physical training mesocycle on athletic and specific fitness of elite boxers. Arch. Budo 2011, 7, 33–39. [Google Scholar]
- Smith, M.S. Physiological profile of senior and junior England international amateur boxers. J. Sports Sci. Med. 2006, 5, 74–89. [Google Scholar] [PubMed]
- Warnick, J.E.; Warnick, K. Specification of variables predictive of victories in the sport of boxing. Percept. Mot. Skills 2007, 10, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Blaževic, S.; Širić, V.; Matas, A. Factor structure of boxer’s motor abilities. Acta. Kinesiol. 2008, 2, 30–36. [Google Scholar]
- Kalac, R.; Gontarev, S. Relations of basic and specific motor abilities in boxers. Res. Kinesiol. 2014, 42, 122–127. [Google Scholar]
- Hubner-Wozniak, E.; Kosmol, A.; Błachnio, D. Anaerobic capacity of upper and lower limbs muscles in combat sports contestants. J. Combat. Sports Martial Arts 2011, 2, 91–94. [Google Scholar] [CrossRef]
- Hübner-Woźniak, E.; Lutosławska, G.; Gajewski, J. The effect of training on the activity of creatine kinase (CK) and lactate dehydrogenase (LD) and uric plasma of elite boxers. Hum. Mov. 2004, 5, 89–94. [Google Scholar]
- Ambroży, T. Struktura Treningu Ju-Jitsu: Biblioteka Trenera; Centralny Ośrodek Sportu: Warsaw, Poland, 2008; pp. 78–79. (In Polish) [Google Scholar]
- Arseneau, E.; Mekary, S.; Léger, L.A. VO2 requirements of boxing exercises. J. Strength. Cond. Res. 2011, 25, 348–359. [Google Scholar] [CrossRef]
- Chaabène, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Hammami, M.; Amara, S.; Chaabène, R.B.; Hachana, Y. Amateur Boxing: Physical and Physiological Attributes. Sports Med. 2014, 45, 337–352. [Google Scholar] [CrossRef]
- Slimani, M.; Chaabene, H.; Miarka, B.; Franchini, E.; Chamari, K.; Cheour, F. Kickboxing review: Anthropometric, psychophysiological and activity profiles and injury epidemiology. Biol. Sport 2017, 34, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Wilber, R.L. Application of altitude/hypo11xic training by elite athletes. Med. Sci. Sports Exerc. 2007, 9, 1610–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The Effects of Intermittent Hypoxic Training on Aerobic Capacity and Endurance Performance in Cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar] [PubMed]
- Dufour, S.P.; Ponsot, E.; Zoll, J.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Geny, B.; Lampert, E.; Flück, M.; Hoppeler, H.; Billat, V.L.; et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J. Appl. Physiol. 2006, 100, 1238–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, B.D. Intermittent Hypoxic Training: Fact and Fancy. High. Alt. Med. Biol. 2002, 3, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Levine, B.D.; Stray-Gundersen, J. Dose-response of altitude training: How much altitude is enough? In Atherosclerosis; Springer: New York, NY, USA, 2006; Volume 588, pp. 233–247. [Google Scholar]
- Faiss, R.; Léger, B.; Vesin, J.-M.; Fournier, P.-E.; Eggel, Y.; Dériaz, O.; Millet, G.P. Significant Molecular and Systemic Adaptations after Repeated Sprint Training in Hypoxia. PLoS ONE 2013, 8, e56522. [Google Scholar] [CrossRef] [Green Version]
- Hendriksen, I.J.; Meeuwsen, T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: A cross-over study in humans. Eur. J. Appl. Physiol. 2003, 88, 396–403. [Google Scholar] [CrossRef]
- Meeuwsen, T.; Hendriksen, I.J.M.; Holewijn, M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur. J. Appl. Physiol. 2001, 84, 283–290. [Google Scholar] [CrossRef]
- Puype, J.; Van Proeyen, K.; Raymackers, J.M.; Deldicque, L.; Hespel, P. Sprint Interval Training in Hypoxia Stimulates Glycolytic Enzyme Activity. Med. Sci. Sports Exerc. 2013, 45, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Brocherie, F.; Girard, O.; Faiss, R.; Millet, G.P. High-intensity intermittent training in hypoxia: A double-blinded, placebo-controlled field study in youth football players. J. Strength Cond. Res. 2015, 29, 226–237. [Google Scholar] [CrossRef]
- Sanchez, A.M.J.; Borrani, F. Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. J. Sports Sci. 2018, 36, 2045–2052. [Google Scholar] [CrossRef]
- Rodriguez, F.A.; Truijens, M.J.; Townsend, N.E.; Martini, E.R.; Stray-Gundersen, J.; Gore, C.J.; Levine, B.D. Effects of four weeks of intermittent hypobaric hypoxia on sea level running and swimming performance. Med. Sci. Sports Exerc. 2004, 36, S338. [Google Scholar]
- Hamlin, M.J.; Hellemans, J. Effects of intermittent normobaric hypoxia on blood parameters in multi-sport endurance athletes. Med. Sci. Sports Exerc. 2004, 36, 337. [Google Scholar] [CrossRef]
- Beidleman, B.A.; Muza, S.R.; Fulco, C.S.; Jones, J.E.; Lammi, E.; Staab, J.E.; Cymerman, A. Intermittent Hypoxic Exposure Does Not Improve Endurance Performance at Altitude. Med. Sci. Sports Exerc. 2009, 41, 1317–1325. [Google Scholar] [CrossRef]
- Bonetti, D.L.; Hopkins, W.G.; Kilding, A.E. High-Intensity Kayak Performance after Adaptation to Intermittent Hypoxia. Int. J. Sports Physiol. Perform. 2006, 1, 246–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czuba, M.; Zajac, A.; Maszczyk, A.; Roczniok, R.; Poprzecki, S.; Garbaciak, W.; Zając, T. The Effects of High Intensity Interval Training in Normobaric Hypoxia on Aerobic Capacity in Basketball Players. J. Hum. Kinet. 2013, 39, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R.; Flück, M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006, 100, 1258–1266. [Google Scholar] [CrossRef]
- Katayama, K.; Matsuo, H.; Ishida, K.; Mori, S.; Miyamura, M. Intermittent Hypoxia Improves Endurance Performance and Submaximal Exercise Efficiency. High. Alt. Med. Biol. 2003, 4, 291–304. [Google Scholar] [CrossRef]
- Katayama, K.; Sato, K.; Matsuo, H.; Ishida, K.; Iwasaki, K.-I.; Miyamura, M. Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur. J. Appl. Physiol. 2004, 92, 75–83. [Google Scholar] [CrossRef]
- Roels, B.; Millet, G.P.; Marcoux, C.J.L.; Coste, O.; Bentley, D.J.; Candau, R.B. Effects of Hypoxic Interval Training on Cycling Performance. Med. Sci. Sports Exerc. 2005, 37, 138–146. [Google Scholar] [CrossRef]
- Ogita, F. Energetics in competitive swimming and its application for training. In Biomechanics and Medicine in Swimming; Vilas-Boas, J.P., Alves, F., Marques, A., Eds.; Porto Faculdade de Desporto da Universidade do Porto: Porto, Portugal, 2006; Volume 6, pp. 117–121. [Google Scholar]
- Hamlin, M.J.; Marshall, H.C.; Hellemans, J.; Ainslie, P.N.; Anglem, N. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand. J. Med. Sci. Sports 2010, 20, 651–661. [Google Scholar] [CrossRef]
- Abellán, R.; Remacha, A.F.; Ventura, R.; Sardà, M.P.; Segura, J.; Rodríguez, F. Hematologic response to four weeks of intermittent hypobaric hypoxia in highly trained athletes. Haematologica 2005, 90, 126–127. [Google Scholar] [PubMed]
- Gore, C.J.; Rodríguez, F.; Truijens, M.J.; Townsend, N.E.; Stray-Gundersen, J.; Levine, B.D. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000–5500 m). J. Appl. Physiol. 2006, 101, 1386–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian, C.G.; Gore, C.J.; Wilber, R.L.; Daniels, J.T.; Fredericson, M.; Stray-Gundersen, J.; Hahn, A.G.; Parisotto, R.; Levine, B.D. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J. Appl. Physiol. 2004, 96, 1800–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsen, T.; Rolf, S.; Fascm, J.S.G. Effects of 3 weeks hypoxic interval training on sea level cycling performance and hematological parameters. Med. Sci. Sports Exerc. 2002, 34, S224. [Google Scholar] [CrossRef]
- Truijens, M.J.; Toussaint, H.M.; Dow, J.; Levine, B.D. Effect of high-intensity hypoxic training on sea-level swimming performances. J. Appl. Physiol. 2003, 94, 733–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, N.; Hoppeler, H.; Seiler, R.; Binggeli, A.; Mullis, P.; Vogt, M. The Response of Trained Athletes to Six Weeks of Endurance Training in Hypoxia or Normoxia. Int. J. Sports Med. 2003, 24, 166–172. [Google Scholar] [CrossRef]
- Semenza, G.L.; Shimoda, L.A.; Prabhakar, N.R. Regulation of Gene Expression by HIF-1. In Novartis Foundation Symposium Chichester; John Wiley: New York, NY, USA, 1999; p. 272. [Google Scholar]
- Vogt, M.; Puntschart, A.; Geiser, J.; Zuleger, C.; Billeter, R.; Hoppeler, H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J. Appl. Physiol. 2001, 91, 173–182. [Google Scholar] [CrossRef]
- Koumenis, C. "Translating" Tumor Hypoxia: Unfolded Protein Response (UPR)-Dependent and UPR-Independent Pathways. Mol. Cancer Res. 2006, 4, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, T.; Atherton, P.J.; Wilkinson, D.; Selby, A.; Rankin, D.; Webborn, N.; Smith, K.; Watt, P.W. Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise. Am. J. Physiol. Metab. 2011, 301, E697–E702. [Google Scholar] [CrossRef] [Green Version]
- Hamlin, M.J.; Olsen, P.D.; Marshall, H.C.; Lizamore, C.A.; Elliot, C.A. Hypoxic repeat sprint training improves rugby playes’s repeated sprint but not endurance performance. Front. Physiol. 2017, 7, 8–24. [Google Scholar]
Description of exercise |
|
|
|
|
Duration | Period in the Course of Testing | Execution of Exercises in the Experimental Programme |
---|---|---|
First 4 weeks | 1st–4th week of testing | Endurance-speed training. Pace intervals of 8 series, 10 s of work at maximal intensity/50 s break for each exercise interspersed with recovery intervals performed at 4 times lower intensity. |
Following 2 weeks | 5th–6th week of testing | Power training. Power interval of 5 exercises performed at submaximal speed, lasting 20 s, with a 3-min recovery period. During the session, 3 such sets with 10-min recovery (training at low intensity up to 40 percent of maximum load). |
Variables | Hypoxia Training | Normoxia Training | ||||||
---|---|---|---|---|---|---|---|---|
Before | After | p | d | Before | After | p | d | |
BH (cm) | 182.9 ± 5.09 | 182.9 ± 5.09 | - | - | 179.7 ± 4.61 | 179.7 ± 4.61 | - | - |
BM (kg) | 80.9 ± 8.48 | 80.3 ± 8.35 | 0.05 | 0.07 | 77.7 ± 9.19 | 78.0 ± 9.16 | 0.30 | 0.03 |
BMI | 24.2 ± 1.88 | 24.0 ± 1.80 | 0.05 | 0.11 | 24.1 ± 2.53 | 24.2 ± 2.54 | 0.29 | 0.04 |
FAT (%) | 15.3 ± 3.84 | 14.9 ± 3.22 | 0.47 | 0.11 | 14.1 ± 4.49 | 14.5 ± 4.22 | 0.36 | 0.09 |
FAT (kg) | 12.5 ± 4.06 | 12.1 ± 3.54 | 0.32 | 0.11 | 11.1 ± 4.19 | 11.5 ± 4.11 | 0.19 | 0.10 |
Variables | Hypoxia Training | Normoxia Training | Interaction Training × Time | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | p | d | Before | After | p | d | ||
PP [W] | 988.2 ± 120.86 | 1011.8 ± 124.76 | 0.001 * | 0.192 | 957.8 ± 136.13 | 955 ± 137.65 | 0.850 | 0.020 | f = 3.106; p = 0.097 |
MP [W] | 741.1 ± 87.26 | 764.8 ± 84.98 | 0.001 * | 0.275 | 729.2 ± 78.94 | 732.3 ± 81.25 | 0.630 | 0.039 | f = 7.394; p = 0.015 |
PP [W·kg−1] | 12.21 ± 0.99 | 12.61 ± 0.81 | 0.45 | 0.111 | 12.28 ± 1.15 | 12.22 ± 1 | 0.737 | 0.056 | f = 0.58; p = 0.457 |
MP [W·kg−1] | 9.16 ± 0.79 | 9.49 ± 0.83 | 0.002 * | 0.407 | 9.38 ± 0.65 | 9.41 ± 0.71 | 0.631 | 0.044 | f = 9.257; p = 0.008 |
FI [W·s−1] | 20.33 ± 3.37 | 18.6 ± 2.37 | 0.013 * | 0.594 | 16.89 ± 4.79 | 16.23 ± 4.11 | 0.371 | 0.148 | f = 1.489; p = 0.24 |
TW [kJ] | 22.39 ± 2.63 | 22.84 ± 2.37 | 0.046 * | 0.180 | 22.05 ± 2.39 | 22.19 ± 2.48 | 0.510 | 0.057 | f = 1.288; p = 0.273 |
tPP [s] | 5.01 ± 0.77 | 4.72 ± 0.83 | 0.038 * | 0.362 | 4.12 ± 0.36 | 3.83 ± 0.69 | 0.340 | 0.527 | f = 0; p = 1 |
LA3’ [mmol·L−1] | 13.1 ± 1.3 | 12.1 ± 1.62 | 0.205 | 0.681 | 12.1 ± 1.62 | 10.22 ± 1.58 | 0.053 | 1.175 | f = 0.633; p = 0.438 |
LA20’ [mmol·L−1] | 10.68 ± 1.98 | 9.15 ± 2.29 | 0.252 | 0.715 | 9.24 ± 1.93 | 7.85 ± 1.91 | 0.162 | 0.724 | f = 0.009; p = 0.926 |
LA3’-20’ [mmol·L−1] | 2.42 ± 1.9 | 2.95 ± 2.83 | 0.688 | 0.220 | 2.86 ± 1.41 | 2.37 ± 1.35 | 0.539 | 0.355 | f = 0.467; p = 0.504 |
Variables | Hypoxia Training | Normoxia Training | Interaction Training × Time | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | p | d | Before | After | p | d | ||
Vmax [km·h−1] | 14.61 ± 1.31 | 15.29 ± 1.25 | 0.002 * | 0.531 | 16.26 ± 1.35 | 16.25 ± 1.11 | 0.958 | 0.008 | f = 9.009; p = 0.008 |
VEmax [L·min−1] | 156.5 ± 19.66 | 161.9 ± 19.53 | 0.004 * | 0.276 | 165.4 ± 23.8 | 163.2 ± 20.21 | 0.712 | 0.100 | f = 1.632; p = 0.22 |
HRmax [bpm] | 186.6 ± 5.85 | 187 ± 7.18 | 0.733 | 0.061 | 188.9 ± 6.9 | 188.3 ± 7.02 | 0.644 | 0.086 | f = 0.34; p = 0.567 |
VO2peak [mL·min−1] | 4257.8 ± 474.1 | 4226.1 ± 458.2 | 0.654 | 0.068 | 4438.2 ± 466 | 4444.7 ± 495.5 | 0.926 | 0.014 | f = 0.158; p = 0.696 |
VO2peak [mL·kg−1] | 52.74 ± 4.24 | 52.73 ± 3.44 | 0.992 | 0.003 | 57.36 ± 4.63 | 57.07 ± 3.13 | 0.761 | 0.073 | f = 0.051; p = 0.824 |
VVT2 [km·h−1] | 12.69 ± 1.01 | 13.14 ± 0.97 | 0.019 * | 0.454 | 13.93 ± 1.06 | 13.95 ± 0.9 | 0.833 | 0.020 | f = 4.582; p = 0.048 |
HRVT2 [bpm] | 176 ± 3.54 | 175.1 ± 5.25 | 0.354 | 0.201 | 178.3 ± 5.48 | 178.6 ± 7.2 | 0.852 | 0.047 | f = 0.58; p = 0.459 |
%HRmax at VT2 | 94.38 ± 1.87 | 93.69 ± 1.98 | 0.108 | 0.358 | 94.44 ± 1.41 | 94.81 ± 1.21 | 0.280 | 0.282 | f = 4.55; p = 0.049 |
VO2 at VT2 [mL·kg−1] | 48.28 ± 3.32 | 47.63 ± 3.15 | 0.241 | 0.201 | 50.9 ± 2.88 | 51.08 ± 2.55 | 0.688 | 0.066 | f = 1.532; p = 0.234 |
VO2 at VT2 [mL·min−1] | 3896.9 ± 386.7 | 3814.8 ± 383.1 | 0.082 | 0.213 | 3941.5 ± 385.61 | 3977.3 ± 428.49 | 0.289 | 0.088 | f = 5.141; p = 0.038 |
%VO2peak at VT2 | 91.67 ± 2.84 | 90.35 ± 2.21 | 0.128 | 0.519 | 88.91 ± 2.77 | 89.54 ± 1.92 | 0.482 | 0.264 | f = 2.83; p = 0.112 |
LA3’ [mmol·L−1] | 10.58 ± 1.48 | 10.58 ± 2.78 | 0.999 | 0.000 | 11.23 ± 1.95 | 9.68 ± 1.83 | 0.122 | 0.820 | f = 1.970; p = 0.18 |
LA20’ [mmol·L−1] | 5.6 ± 1.1 | 4.81 ± 2.02 | 0.258 | 0.486 | 5.86 ± 1.84 | 4.54 ± 1.66 | 0.079 | 0.753 | f = 0.328; p = 0.575 |
LA3’-20’ [mmol·L−1] | 4.98 ± 1.66 | 6.44 ± 2.57 | 0.127 | 0.675 | 5.37 ± 1.35 | 5.81 ± 2.26 | 0.523 | 0.236 | f = 0.89; p = 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroży, T.; Maciejczyk, M.; Klimek, A.T.; Wiecha, S.; Stanula, A.; Snopkowski, P.; Pałka, T.; Jaworski, J.; Ambroży, D.; Rydzik, Ł.; et al. The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers. Int. J. Environ. Res. Public Health 2020, 17, 9361. https://doi.org/10.3390/ijerph17249361
Ambroży T, Maciejczyk M, Klimek AT, Wiecha S, Stanula A, Snopkowski P, Pałka T, Jaworski J, Ambroży D, Rydzik Ł, et al. The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers. International Journal of Environmental Research and Public Health. 2020; 17(24):9361. https://doi.org/10.3390/ijerph17249361
Chicago/Turabian StyleAmbroży, Tadeusz, Marcin Maciejczyk, Andrzej T. Klimek, Szczepan Wiecha, Arkadiusz Stanula, Piotr Snopkowski, Tomasz Pałka, Janusz Jaworski, Dorota Ambroży, Łukasz Rydzik, and et al. 2020. "The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers" International Journal of Environmental Research and Public Health 17, no. 24: 9361. https://doi.org/10.3390/ijerph17249361
APA StyleAmbroży, T., Maciejczyk, M., Klimek, A. T., Wiecha, S., Stanula, A., Snopkowski, P., Pałka, T., Jaworski, J., Ambroży, D., Rydzik, Ł., & Cynarski, W. (2020). The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers. International Journal of Environmental Research and Public Health, 17(24), 9361. https://doi.org/10.3390/ijerph17249361