Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Sample
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Millet, G.P.; Bentley, D.J.; Vleck, V.E. The Relationships Between Science and Sport: Application in Triathlon. Int. J. Sport Physiol. 2007, 2, 315–322. [Google Scholar] [CrossRef]
- Piacentini, M.F.; Bianchini, L.A.; Minganti, C.; Sias, M.; Di Castro, A.; Vleck, V. Is the Bike Segment of Modern Olympic Triathlon More a Transition towards Running in Males than It Is in Females? Sports 2019, 7, 76. [Google Scholar]
- Vleck, V.E.; Burgi, A.; Bentley, D.J. The consequences of swim, cycle, and run performance on overall result in elite olympic distance triathlon. Int. J. Sports Med. 2006, 27, 43–48. [Google Scholar] [CrossRef]
- Ofoghi, B.; Zeleznikow, J.; Macmahon, C.; Rehula, J.; Dwyer, D.B. Performance analysis and prediction in triathlon. J. Sports Sci. 2016, 34, 607–612. [Google Scholar] [CrossRef]
- Etxebarria, N.; Mujika, I.; Pyne, D.B. Training and competition readiness in triathlon. Sports 2019, 7, 101. [Google Scholar]
- Hausswirth, C.; Brisswalter, J. Strategies for improving performance in long duration events. Sports Med. 2008, 38, 881–891. [Google Scholar]
- Bentley, D.J.; Millet, G.P.; Vleck, V.E.; McNaughton, L.R. Specific aspects of contemporary triathlon. Sports Med. 2002, 32, 345–359. [Google Scholar]
- Barbosa, L.P.; Sousa, C.V.; Sales, M.M.; Olher, R.D.R.; Aguiar, S.S.; Santos, P.A.; Tiozzo, E.; Simoes, H.G.; Nikolaidis, P.T.; Knechtle, B. Celebrating 40 Years of Ironman: How the Champions Perform. Int. J. Environ. Res. Public Health 2019, 16, 1019. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Wirth, A.; Rosemann, T. Predictors of race time in male Ironman triathletes: Physical characteristics, training, or prerace experience? Percept. Mot. Ski. 2010, 111, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.V.; Barbosa, L.P.; Sales, M.M.; Santos, P.A.; Tiozzo, E.; Herbert, H.G.; Nikolaidis, P.; Knechtle, B. Cycling as the best sub-8-hour performance predictor in full distance triathlon. Sports 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, M.L.; Douglas, P.S. Applied physiology of triathlon. Sports Med. 1995, 19, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.; Dolan, S.; Martin, S. The impact of physical, nutritional, and mental preparation on triathlon performance. J. Sports Med. Phys. Fit. 2011, 51, 583–594. [Google Scholar]
- Knechtle, B.; Knechtle, R.; Stiefel, M.; Zingg, M.A.; Rosemann, T.; Rust, C.A. Variables that influence Ironman triathlon performance—What changed in the last 35 years? Open Access J. Sports Med. 2015, 6, 277–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.S.; Peiffer, J.J.; Brisswalter, J.; Nosaka, K.; Lau, W.Y.; Abbiss, C.R. Pacing strategies during the swim, cycle and run disciplines of sprint, Olympic and half-Ironman triathlons. Eur. J. Appl. Physiol. 2015, 115, 1147–1154. [Google Scholar] [CrossRef]
- Wu, S.S.; Peiffer, J.J.; Brisswalter, J.; Nosaka, K.; Abbiss, C.R. Factors influencing pacing in triathlon. Open Access J. Sports Med. 2014, 5, 223. [Google Scholar] [CrossRef] [Green Version]
- Cejuela, R.; Cala, A.; Pérez-Turpin, J.A.; Villa, J.G.; Cortell, J.M.; Chinchilla, J.J. Temporal activity in particular segments and transitions in the Olympic triathlon. J. Hum. Kinet. 2013, 36, 87–95. [Google Scholar] [CrossRef]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [Green Version]
- World Triathlon Series (WTS). Available online: www.triathlon.org/results (accessed on 16 December 2020).
- Triathlon Races Held during the Olympic Games. Available online: www.triathlon.org/olympics/history (accessed on 16 December 2020).
- Triathlete. Available online: https://www.triathlete.com (accessed on 16 December 2020).
- du Plessis, C.; Blazevich, A.J.; Abbiss, C.; Wilkie, J.C. Running economy and effort after cycling: Effect of methodological choices. J. Sports Sci. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Olcina, G.; Perez-Sousa, M.Á.; Escobar-Alvarez, J.A.; Timón, R. Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Tew, G. The effect of cycling cadence on subsequent 10km running performance in well-trained triathletes. J. Sports Sci. Med. 2005, 4, 342. [Google Scholar]
- Bernard, T.; Vercruyssen, F.; Grego, F.; Hausswirth, C.; Lepers, R.; Vallier, J.-M.; Brisswalter, J. Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. Br. J. Sports Med. 2003, 37, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, G.P.; Vleck, V.E. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: Review and practical recommendations for training. Br. J. Sports Med. 2000, 34, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, A.R.; Vicenzino, B.; Blanch, P.; Dowlan, S.; Hodges, P.W. Does cycling effect motor coordination of the leg during running in elite triathletes? J. Sci. Med. Sport 2008, 11, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.R.; Vicenzino, B.; Hodges, P.W.; Blanch, P.; Hahn, A.G.; Milner, T.E. A protocol for measuring the direct effect of cycling on neuromuscular control of running in triathletes. J. Sports Sci. 2009, 27, 767–782. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; de Sousa, C.V.; Knechtle, B. Sex difference in long-distance open-water swimming races—does nationality play a role? Res. Sports Med. 2018, 26, 332–344. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Sex Differences in the Age of Peak Marathon Race Time. Chin. J. Physiol. 2018, 61, 85–91. [Google Scholar] [CrossRef]
- Sousa, C.V.; Sales, M.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. How much further for the sub-2-hour marathon? Open Access J. Sports Med. 2018, 9, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Rust, C.A.; Knechtle, B.; Rosemann, T.; Lepers, R. Sex difference in race performance and age of peak performance in the Ironman Triathlon World Championship from 1983 to 2012. Extrem Physiol. Med. 2012, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Maher, A.C.; Fu, M.H.; Isfort, R.J.; Varbanov, A.R.; Qu, X.A.; Tarnopolsky, M.A. Sex differences in global mRNA content of human skeletal muscle. PLoS ONE 2009, 4, e6335. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Sartor, M.A.; Nader, G.A.; Gutmann, L.; Treutelaar, M.K.; Pistilli, E.E.; Iglayreger, H.B.; Burant, C.F.; Hoffman, E.P.; Gordon, P.M. Skeletal muscle gene expression in response to resistance exercise: Sex specific regulation. BMC Genom. 2010, 11, 659. [Google Scholar] [CrossRef] [Green Version]
- Hafen, P.S.; Vehrs, P.R. Sex-Related Differences in the Maximal Lactate Steady State. Sports 2018, 6, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roepstorff, C.; Thiele, M.; Hillig, T.; Pilegaard, H.; Richter, E.A.; Wojtaszewski, J.F.; Kiens, B. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J. Physiol. 2006, 574, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. (Oxf.) 2014, 210, 768–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaidis, P.T.; Di Gangi, S.; de Sousa, C.V.; Valeri, F.; Rosemann, T.; Knechtle, B. Sex difference in open-water swimming-The Triple Crown of Open Water Swimming 1875–2017. PLoS ONE 2018, 13, e0202003. [Google Scholar] [CrossRef] [PubMed]
- Vleck, V.E.; Bentley, D.J.; Millet, G.P.; Burgi, A. Pacing during an elite Olympic distance triathlon: Comparison between male and female competitors. J. Sci. Med. Sport 2008, 11, 424–432. [Google Scholar] [CrossRef]
- Hanley, B.; Hettinga, F.J. Champions are racers, not pacers: An analysis of qualification patterns of Olympic and IAAF World Championship middle distance runners. J. Sports Sci. 2018, 36, 2614–2620. [Google Scholar] [CrossRef]
- Sleivert, G.G.; Rowlands, D.S. Physical and physiological factors associated with success in the triathlon. Sports Med. 1996, 22, 8–18. [Google Scholar] [CrossRef]
- Weich, C.; Jensen, R.L.; Vieten, M. Triathlon transition study: Quantifying differences in running movement pattern and precision after bike-run transition. Sports Biomech. 2019, 18, 215–228. [Google Scholar] [CrossRef]
- McMurray, R.; Williams, D.K.; Battaglini, C.L. The timing of fluid intake during an Olympic distance triathlon. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 611–619. [Google Scholar] [CrossRef]
R | R2 | p-Value | Coefficients | ||||
---|---|---|---|---|---|---|---|
Swim | Cycle | Run | |||||
Race ranking | |||||||
Elite men | All (n = 33,098) | 0.981 | 0.962 | <0.001 | 1.030 | 0.884 | 1.035 |
Top 3 (n = 2678) | 0.952 | 0.906 | <0.001 | 0.971 | 0.855 | 0.975 | |
≥4th (n = 30,418) | 0.981 | 0.963 | <0.001 | 1.030 | 0.886 | 1.034 | |
Elite women | All (n = 18,928) | 0.991 | 0.982 | <0.001 | 1.012 | 0.966 | 1.005 |
Top 3 (n = 2680) | 0.987 | 0.975 | <0.001 | 0.984 | 0.971 | 1.019 | |
≥4th (n = 16,247) | 0.991 | 0.982 | <0.001 | 1.015 | 0.966 | 1.001 | |
Nondraft (1989–1999) vs. draft (2000–2019) | |||||||
Elite men | Nondraft (n = 2269) | 0.955 | 0.912 | <0.001 | 1.044 | 0.780 | 1.080 |
Draft (n = 30,830) | 0.982 | 0.965 | <0.001 | 1.032 | 0.891 | 1.029 | |
Elite women | Nondraft (n = 1841) | 0.957 | 0.916 | <0.001 | 1.083 | 0.801 | 1.093 |
Draft (n = 17,087) | 0.995 | 0.990 | <0.001 | 1.001 | 0.988 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadelha, A.B.; Sousa, C.V.; Sales, M.M.; dos Santos Rosa, T.; Flothmann, M.; Barbosa, L.P.; da Silva Aguiar, S.; Olher, R.R.; Villiger, E.; Nikolaidis, P.T.; et al. Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon. Int. J. Environ. Res. Public Health 2020, 17, 9491. https://doi.org/10.3390/ijerph17249491
Gadelha AB, Sousa CV, Sales MM, dos Santos Rosa T, Flothmann M, Barbosa LP, da Silva Aguiar S, Olher RR, Villiger E, Nikolaidis PT, et al. Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon. International Journal of Environmental Research and Public Health. 2020; 17(24):9491. https://doi.org/10.3390/ijerph17249491
Chicago/Turabian StyleGadelha, André Bonadias, Caio Victor Sousa, Marcelo Magalhaes Sales, Thiago dos Santos Rosa, Marti Flothmann, Lucas Pinheiro Barbosa, Samuel da Silva Aguiar, Rafael Reis Olher, Elias Villiger, Pantelis Theodoros Nikolaidis, and et al. 2020. "Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon" International Journal of Environmental Research and Public Health 17, no. 24: 9491. https://doi.org/10.3390/ijerph17249491
APA StyleGadelha, A. B., Sousa, C. V., Sales, M. M., dos Santos Rosa, T., Flothmann, M., Barbosa, L. P., da Silva Aguiar, S., Olher, R. R., Villiger, E., Nikolaidis, P. T., Rosemann, T., Hill, L., & Knechtle, B. (2020). Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon. International Journal of Environmental Research and Public Health, 17(24), 9491. https://doi.org/10.3390/ijerph17249491