The Trends of Medical Care Expenditure with Adjustment of Lifestyle Habits and Medication; 10-Year Retrospective Follow-Up Study
Abstract
:1. Introduction
2. Japanese Insurance System
3. Methods
3.1. Participants
3.2. Collection of Clinical, Anthropometric, and Lifestyle Information
3.3. Medical Expenditure
3.4. Statistical Analysis
3.5. Ethics Statement
4. Results
5. Discussion
Study Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scarborough, P.; Bhatnagar, P.; Wickramasinghe, K.K.; Allender, S.; Foster, C.; Rayner, M. The economic burden of ill health due to diet, physical inactivity, smoking, alcohol and obesity in the UK: An update to 2006-07 NHS costs. J. Public Health 2011, 33, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Nagai, M.; Kuriyama, S.; Kakizaki, M.; Ohmori-Matsuda, K.; Sone, T.; Hozawa, A.; Kawado, M.; Hashimoto, S.; Tsuji, I. Impact of obesity, overweight and underweight on life expectancy and lifetime medical expenditures: The Ohsaki Cohort Study. BMJ Open 2012, 2, e000940. [Google Scholar] [CrossRef]
- Izumi, Y.; Tsuji, I.; Ohkubo, T.; Kuwahara, A.; Nishino, Y.; Hisamichi, S. Impact of smoking habit on medical care use and its costs- a prospective observation of National Health Insurance beneficiaries in Japan. Int. J. Epidemiol. 2001, 30, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Withrow, D.; Alter, D.A. The economic burden of obesity worldwide: A systematic review of the direct costs of obesity. Obes. Rev. 2011, 12, 131–141. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. The Global Economic Burden of Non-Communicable Diseases. Available online: http://apps.who.int/medicinedocs/documents/s18806en/s18806en.pdf (accessed on 1 October 2020).
- Ministry of Health, Labour and Welfare. Overview of 2017 National Healthcare Expenditure; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2018. Available online: https://www.mhlw.go.jp/toukei/saikin/hw/k-iryohi/17/index.html (accessed on 1 October 2020).
- Kohro, T.; Furui, Y.; Mitsutake, N.; Fujii, R.; Morita, H.; Oku, S.; Ohe, K.; Nagai, R. The Japanese national health screening and intervention program aimed at preventing worsening of the metabolic syndrome. Int. Heart J. 2008, 49, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.; Brenneman, A.T.; Brown-Friday, J.O.; Goldberg, R.; Venditti, E.; Nathan, D.M. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [Google Scholar] [PubMed] [Green Version]
- Lin, H.; Zhang, L.; Zheng, R.; Zheng, Y. The prevalence, metabolic risk and effects of lifestyle intervention for metabolically healthy obesity: A systematic review and meta-analysis: A PRISMA-compliant article. Medicine 2017, 96, e8838. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Ortega, F.B.; Labayen, I. A weight loss diet intervention has a similar beneficial effect on both metabolically abnormal obese and metabolically healthy but obese premenopausal women. Ann. Nutr. Metab. 2013, 62, 223–230. [Google Scholar] [CrossRef]
- Janiszewski, P.M.; Ross, R. Effects of weight loss among metabolically healthy obese men and women. Diabetes Care 2010, 33, 1957–1959. [Google Scholar] [CrossRef] [Green Version]
- Kantartzis, K.; Machann, J.; Schick, F.; Rittig, K.; Machicao, F.; Fritsche, A.; Haring, H.U.; Stefan, N. Effects of a lifestyle intervention in metabolically benign and malign obesity. Diabetologia 2011, 54, 864–868. [Google Scholar] [CrossRef] [Green Version]
- Dalzill, C.; Nigam, A.; Juneau, M.; Guilbeault, V.; Latour, E.; Mauriege, P.; Gayda, M. Intensive lifestyle intervention improves cardiometabolic and exercise parameters in metabolically healthy obese and metabolically unhealthy obese individuals. Can. J. Cardiol. 2014, 30, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Klersy, C.; Perna, S.; Faliva, M.A.; Montorfano, G.; Roderi, P.; Colombo, I.; Corsetto, P.A.; Fioravanti, M.; Solerte, S.B.; et al. Effects of two-months balanced diet in metabolically healthy obesity: Lipid correlations with gender and BMI-related differences. Lipids Health Dis. 2015, 14, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, H.; Akahoshi, K.; Kai, M. Association of the change in waist circumstance with metabolic risk factors among elderly people in Japan—Population-based retrospective 10-year follow-up study. (manuscript in preparation).
- R Core Team. R: A language and enviroment for staistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available online: http://www.R-project.org/. (accessed on 2 July 2018).
- Biener, A.; Cawley, J.; Meyerhoefer, C. The High and Rising Costs of Obesity to the US Health Care System. J. Gen. Intern. Med. 2017, 32, 6–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawley, J.; Meyerhoefer, C.; Biener, A.; Hammer, M.; Wintfeld, N. Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by Diabetes Status. Pharmacoeconomics 2015, 33, 707–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.J.; Hwang, J.; Pi, S.; Ahn, S.; Heo, Y.; Park, S.; Kwon, J.W. The impact of obesity and overweight on medical expenditures and disease incidence in Korea from 2002 to 2013. PLoS ONE 2018, 13, e0197057. [Google Scholar] [CrossRef] [Green Version]
- Ozieh, M.N.; Bishu, K.G.; Dismuke, C.E.; Egede, L.E. Trends in health care expenditure in U.S. adults with diabetes: 2002–2011. Diabetes Care 2015, 38, 1844–1851. [Google Scholar] [CrossRef] [Green Version]
- Biener, A.; Cawley, J.; Meyerhoefer, C. The Impact of Obesity on Medical Care Costs and Labor Market Outcomes in the US. Clin. Chem. 2018, 64, 108–117. [Google Scholar] [CrossRef] [Green Version]
- von Lengerke, T.; Hagenmeyer, E.G.; Gothe, H.; Schiffhorst, G.; Happich, M.; Haussler, B. Excess health care costs of obesity in adults with diabetes mellitus: A claims data analysis. Exp. Clin. Endocrinol. Diabetes 2010, 118, 496–504. [Google Scholar] [CrossRef]
- Kusunoki-Tsuji, C.; Araki, S.I.; Kume, S.; Chin-Kanasaki, M.; Osawa, N.; Morino, K.; Sekine, O.; Ugi, S.; Kashiwagi, A.; Maegawa, H. Impact of obesity on annual medical expenditures and diabetes care in Japanese patients with type 2 diabetes mellitus. J. Diabetes Investig. 2018, 9, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Sairenchi, T.; Iso, H.; Yamagishi, K.; Irie, F.; Nagao, M.; Umesawa, M.; Haruyama, Y.; Kobashi, G.; Watanabe, H.; Ota, H. Impact and attribute of each obesity-related cardiovascular risk factor in combination with abdominal obesity on total health expenditures in adult Japanese National Health insurance beneficiaries: The Ibaraki Prefectural health study. J. Epidemiol. 2017, 27, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare. Standard Health Screening and Health Guidance Program. Tokyo, Japan, 2018. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000194155.html (accessed on 1 October 2020).
- Hatziandreu, E.I.; Koplan, J.P.; Weinstein, M.C.; Caspersen, C.J.; Warner, K.E. A cost-effectiveness analysis of exercise as a health promotion activity. Am. J. Public Health 1988, 78, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, T.F.; Eaton, C.B. Cost-benefit analysis of walking to prevent coronary heart disease. Arch. Fam. Med. 1994, 3, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, M.; Macera, C.A.; Wang, G. Higher direct medical costs associated with physical inactivity. Phys. Sportsmed. 2000, 28, 63–70. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Gledhill, N.; Shephard, R.J. The economic burden of physical inactivity in Canada. CMAJ 2000, 163, 1435–1440. [Google Scholar] [PubMed]
- Wang, G.; Pratt, M.; Macera, C.A.; Zheng, Z.J.; Heath, G. Physical activity, cardiovascular disease, and medical expenditures in U.S. adults. Ann. Behav. Med. 2004, 28, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Oldridge, N.B. Economic burden of physical inactivity: Healthcare costs associated with cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 130–139. [Google Scholar] [CrossRef]
- Janssen, I. Health care costs of physical inactivity in Canadian adults. Appl. Physiol. Nutr. Metab. 2012, 37, 803–806. [Google Scholar] [CrossRef]
- Kato, M.; Goto, A.; Tanaka, T.; Sasaki, S.; Igata, A.; Noda, M. Effects of walking on medical cost: A quantitative evaluation by simulation focusing on diabetes. J. Diabetes Investig. 2013, 4, 667–672. [Google Scholar] [CrossRef]
- Nagai, M.; Kuriyama, S.; Kakizaki, M.; Ohmori-Matsuda, K.; Sone, T.; Hozawa, A.; Kawado, M.; Hashimoto, S.; Tsuji, I. Impact of walking on life expectancy and lifetime medical expenditure: The Ohsaki Cohort Study. BMJ Open 2011, 1, e000240. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, I.; Takahashi, K.; Nishino, Y.; Ohkubo, T.; Kuriyama, S.; Watanabe, Y.; Anzai, Y.; Tsubono, Y.; Hisamichi, S. Impact of walking upon medical care expenditure in Japan: The Ohsaki Cohort Study. Int. J. Epidemiol. 2003, 32, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Takahashi, H.; Miura, C.; Ohkubo, T.; Sato, Y.; Ugajin, T.; Kurashima, K.; Tsubono, Y.; Tsuji, I.; Fukao, A.; et al. Walking and mortality in Japan: The Miyagi Cohort Study. J. Epidemiol. 2004, 14, S26–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, A.; Khaw, K.T.; Luben, R.; Wareham, N.; Brage, S. Physical activity trajectories and mortality: Population based cohort study. BMJ 2019, 365, l2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Findley, P.A.; Sambamoorthi, U. Health care expenditures of living with a disability: Total expenditures, out-of-pocket expenses, and burden, 1996 to 2004. Arch. Phys. Med. Rehabil. 2009, 90, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, E.M.; Murphy, M.H.; Boone-Heinonen, J. Walking: The first steps in cardiovascular disease prevention. Curr. Opin. Cardiol. 2010, 25, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares-Miranda, L.; Siscovick, D.S.; Psaty, B.M.; Longstreth, W.T., Jr.; Mozaffarian, D. Physical Activity and Risk of Coronary Heart Disease and Stroke in Older Adults: The Cardiovascular Health Study. Circulation 2016, 133, 147–155. [Google Scholar] [CrossRef]
- Hakim, A.A.; Curb, J.D.; Petrovitch, H.; Rodriguez, B.L.; Yano, K.; Ross, G.W.; White, L.R.; Abbott, R.D. Effects of walking on coronary heart disease in elderly men: The Honolulu Heart Program. Circulation 1999, 100, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Ohta, Y.; Kawano, Y.; Minami, J.; Iwashima, Y.; Hayashi, S.; Yoshihara, F.; Nakamura, S. Effects of daily walking on office, home and 24-h blood pressure in hypertensive patients. Clin. Exp. Hypertens. 2015, 37, 433–437. [Google Scholar] [CrossRef]
- Williams, P.T. Reduced diabetic, hypertensive, and cholesterol medication use with walking. Med. Sci. Sports Exerc. 2008, 40, 433–443. [Google Scholar] [CrossRef] [Green Version]
All Subjects (n = 1463) | Medication (n = 744) | No Medication (n = 719) | |||||||
---|---|---|---|---|---|---|---|---|---|
Increased Waist Ratio | Decreased Waist Ratio | Increased Waist Ratio | Decreased Waist Ratio | Increased Waist Ratio | Decreased Waist Ratio | ||||
Number (%) | 424 (29.0) | 1039 (71.0) | 231 (31.0) | 513 (69.0) | 193 (26.8) | 526 (73.2) | |||
Age | 64.3 ± 6.2 | 63.5 ± 5.7 | 0.022 | 64.8 ± 5.3 | 65.6 ± 4.7 | 0.037 | 66.1 ± 6.8 | 67.1 ± 6.3 | 0.071 |
Men (%) | 104 (24.5) | 347 (33.4) | 0.002 | 66 (28.6) | 167 (32.6) | 0.000 | 38 (19.7) | 180 (34.2) | 0.002 |
WC | 87.4 ± 9.6 | 81.9 ± 9.2 | 0.000 | 89.7 ± 9.3 | 84.2 ± 9.1 | 0.000 | 84.7 ± 9.2 | 79.8 ± 8.8 | 0.000 |
BMI | 23.6 ± 3.6 | 22.6 ± 3.3 | 0.000 | 24.4 ± 3.6 | 23.4 ± 3.4 | 0.001 | 22.7 ± 3.4 | 21.9 ± 3.1 | 0.002 |
SBP | 128.5 ± 20.0 | 129.0 ± 18.0 | 0.630 | 131.4 ± 17.3 | 131.0 ± 16.8 | 0.762 | 125.5 ± 18.1 | 127.0 ± 19.0 | 0.189 |
DBP | 75.3 ± 10.9 | 74.7 ± 10.7 | 0.301 | 76.5 ± 10.2 | 75.4 ± 10.8 | 0.171 | 73.9 ± 11.5 | 74.0 ± 11.0 | 0.940 |
TG | 112.3 ± 59.8 | 110.1 ± 60.9 | 0.528 | 118.8 ± 61.1 | 117.7 ± 60.1 | 0.819 | 104.5 ± 57.3 | 102.7 ± 60.9 | 0.714 |
LDL | 127.4 ± 30.2 | 125.7 ± 29.0 | 0.311 | 121.0 ± 28.0 | 117.9 ± 27.5 | 0.167 | 135.2 ± 31.0 | 133.3 ± 28.5 | 0.457 |
HDL | 67.6 ± 16.6 | 66.9 ± 17.5 | 0.473 | 64.8 ± 15.4 | 64.3 ± 16.8 | 0.636 | 70.8 ± 17.4 | 69.4 ± 17.9 | 0.342 |
Smoking (%) | 33 (7.8) | 123 (11.8) | 0.029 | 20 (8.7) | 55 (10.7) | 0.463 | 13 (6.7) | 68 (12.9) | 0.028 |
Weight gain (%) | 153 (36.1) | 309 (29.7) | 0.022 | 99 (42.9) | 187 (36.5) | 0.130 | 54 (28.0) | 122 (23.2) | 0.213 |
Regular exercise (%) | 180 (42.5) | 466 (44.9) | 0.416 | 97 (42.0) | 240 (46.8) | 0.216 | 83 (43.0) | 226 (43.0) | 1.000 |
Walking (%) | 201 (47.4) | 505 (48.6) | 0.683 | 111 (48.1) | 245 (47.8) | 1.000 | 90 (46.6) | 260 (49.4) | 0.582 |
Late-night eating (%) | 52 (12.3) | 117 (11.3) | 0.657 | 29 (12.6) | 61 (11.9) | 0.921 | 23 (11.9) | 56 (10.6) | 0.719 |
Skipping breakfast (%) | 39 (9.2) | 91 (8.8) | 0.865 | 26 (11.3) | 40 (7.8) | 0.172 | 13 (6.7) | 51 (9.7) | 0.289 |
Drinking alcohol (%) | 72 (17.0) | 206 (19.8) | 0.143 | 39 (16.9) | 103 (20.1) | 0.419 | 33 (17.1) | 103 (19.6) | 0.396 |
Medical expenditure | USD 12,513 | USD 12,018 | 0.634 | USD 11,496 | USD 11,886 | 0.862 | USD 5759 | USD 5304 | 0.615 |
Dependent Variable | Independent Variables | Model I | Model II | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | 95%CI | p-Values | B | SE | 95%CI | p-Values | ||
Cumulative medical expenditure | Intercept | 6.8722 | 0.3906 | 6.11–7.64 | <0.001 | 7.5576 | 0.372 | 6.83–8.29 | <0.001 |
Age | 0.0664 | 0.0065 | 0.05–0.08 | <0.001 | 0.0484 | 0.006 | 0.04–0.06 | <0.001 | |
Sex | −0.1635 | 0.0868 | −0.33–0.01 | 0.060 | −0.1814 | 0.079 | −0.34–−0.03 | 0.054 | |
Waist ratio | 0.2188 | 0.0839 | 0.05–0.38 | 0.009 | 0.0932 | 0.079 | −0.06–0.25 | 0.340 | |
Baseline waist circumference | 0.2348 | 0.0896 | 0.06–0.41 | 0.009 | |||||
Taking medication | 1.0200 | 0.073 | 0.88–1.16 | <0.001 | |||||
10 kg of weight gain since the age of 20 | 0.2102 | 0.078 | 0.06–0.36 | 0.007 | |||||
Walking 1 h every day | −0.2085 | 0.071 | −0.35–−0.07 | 0.003 | |||||
AIC | 5219.73 | 4941.48 |
Dependent Variable | Independent Variables | Taking Medication | Not Taking Medication | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | 95%CI | p-Values | B | SE | 95%CI | p-Values | ||
Cumulative medical expenditure | Intercept | 8.8792 | 0.5495 | 7.80–9.96 | 0.000 | 7.3699 | 0.5202 | 6.83–8.40 | 0.0000 |
Age | 0.0389 | 0.0089 | 0.02–0.06 | 0.000 | 0.0538 | 0.0088 | 0.04–0.07 | 0.000 | |
Sex | −0.0283 | 0.0957 | −0.22–0.16 | 0.767 | −0.3597 | 0.1275 | −0.60–−0.07 | 0.005 | |
Waist ratio | 0.1301 | 0.0911 | −0.05–0.31 | 0.153 | 0.0467 | 0.1292 | −0.23–0.29 | 0.718 | |
Hypertension medication | −0.0031 | 0.0933 | −0.19–0.18 | 0.973 | |||||
Diabetes mellitus medication | 0.4780 | 0.1244 | 0.23–0.72 | 0.000 | |||||
Hyperlipidemia medication | 0.1706 | 0.0907 | −0.01–0.35 | 0.060 | |||||
10 kg of weight gain since the age of 20 | 0.2232 | 0.0888 | 0.05–0.40 | 0.012 | 0.1836 | 0.1344 | −0.07–0.05 | 0.172 | |
Walking 1 h every day | −0.1128 | 0.0854 | −0.28–0.05 | 0.187 | −0.3146 | 0.1131 | −0.54–−0.10 | 0.005 | |
AIC | 2254.55 | 2623.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, H.; Akahoshi, K.; Kai, M. The Trends of Medical Care Expenditure with Adjustment of Lifestyle Habits and Medication; 10-Year Retrospective Follow-Up Study. Int. J. Environ. Res. Public Health 2020, 17, 9546. https://doi.org/10.3390/ijerph17249546
Ono H, Akahoshi K, Kai M. The Trends of Medical Care Expenditure with Adjustment of Lifestyle Habits and Medication; 10-Year Retrospective Follow-Up Study. International Journal of Environmental Research and Public Health. 2020; 17(24):9546. https://doi.org/10.3390/ijerph17249546
Chicago/Turabian StyleOno, Haruko, Kotomi Akahoshi, and Michiaki Kai. 2020. "The Trends of Medical Care Expenditure with Adjustment of Lifestyle Habits and Medication; 10-Year Retrospective Follow-Up Study" International Journal of Environmental Research and Public Health 17, no. 24: 9546. https://doi.org/10.3390/ijerph17249546
APA StyleOno, H., Akahoshi, K., & Kai, M. (2020). The Trends of Medical Care Expenditure with Adjustment of Lifestyle Habits and Medication; 10-Year Retrospective Follow-Up Study. International Journal of Environmental Research and Public Health, 17(24), 9546. https://doi.org/10.3390/ijerph17249546