Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Sampling Site
2.2. Aerosol Sampling
2.3. Analytical Method
3. Results and Discussion
3.1. PM10 and PM2.5 Concentrations
3.2. OC/EC
3.3. PAHs and NPAHs
3.4. Water-Soluble Inorganic Ions
3.5. Elemental Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J.; Andreae, M.O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. J. Sci. 1990, 250, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Andreae, M.O. Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; MIT Press, Mass: Cambridge, UK, 1991; pp. 3–21. [Google Scholar]
- Penner, J.E.; Dickinson, R.E.; O’Neill, R.E. Effects of aerosol from biomass burning on the global radiation budget. J. Sci. 1992, 256, 1432–1434. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D. Biomass burning, humans and climate change in Southeast Asia. J. Biodivers. Conserv. 2010, 19, 1025–1042. [Google Scholar] [CrossRef]
- Ramanathan, V.; Agrawal, M.; Akimoto, H. Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia; United Nations Environment Programme: Bangkok, Thailand, 2008. [Google Scholar]
- Reid, J.S.; Xian, P.; Hyer, E.J.; Flatau, M.K.; Ramirez, E.M.; Turk, F.J.; Sampson, C.R.; Zhang, C.; Fukada, E.M.; Maloney, E.D. Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmos. Chem. Phys. 2012, 12, 2117–2147. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.W.; Si, C.T.; Neng, H.L. Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment. Atmos. Environ. 2013, 78, 124–133. [Google Scholar]
- Liu, H.; Chang, W.L.; Oltmans, S.J. On springtime high ozone events in the lower troposphere from Southeast Asian biomass burning. Atmos. Environ. 1999, 33, 2403–2410. [Google Scholar] [CrossRef]
- Wu, G.; Ram, K.; Fu, P. Water-soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), A Regional Representative of South Asia. J. Environ. Sci. Technol. 2019, 53, 3471–3479. [Google Scholar] [CrossRef]
- Qin, S.G.; Ding, A.J.; Wang, T. Transport pattern of biomass burnings air masses in Eurasia and the impacts on China. China Environ. Sci. 2006, 26, 641–645. [Google Scholar]
- Zhou, R.; Zhu, J. Study on the influence of transport of biomass burning materials from Southeast Asia on aerosol radiation effects in Southwest China. J. China Environ. Sci. 2020, 40, 1429–1436. [Google Scholar]
- Zhang, Y.Q.; Yang, Y.C.; Li, J. Modeling the impacts of biomass burning in southeast Asia on PM2.5 over China in spring. J. Res. Environ. Sci. 2016, 29, 952–962. [Google Scholar]
- Ma, Y.; Weber, R.J.; Lee, Y.N.; Orsini, D.A.; Maxwell-Meier, K.; Thornton, D.C.; Bandy, A.R.; Clarke, A.D.; Blake, D.R.; Sachse, G.W.; et al. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution over the Pacific (TRACE–P) experiment. J. Geophys. Res. Atmos. 2003, 108, 8816p. [Google Scholar] [CrossRef] [Green Version]
- Maenhaut, W.; Salma, I.; Cafmeyer, J.; Annegarn, H.J.; Andreae, M.O. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning. J. Geophys. Res. Atmos. 1996, 101, 23631–23650. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Lin, C.J. Transboundary transport and deposition of Hg emission from springtime biomass burning in the Indo-China Peninsula. J. Geophys. Res. Atmos. 2015, 120, 9758–9771. [Google Scholar] [CrossRef]
- Lyu, Y.B.; Tan, L.; Teng, E.J.; Wang, C.; Lyu, T.F.; Liang, X. Concentration levels and composition characteristics of VOCs at the background locations in China. Environ. Chem. 2013, 32, 726–733. [Google Scholar]
- Liu, Z.R.; Wang, Y.S.; Liu, Q.; Liu, L.N.; Zhang, D.Q. Pollution Characteristics and Source of the Atmospheric Fine Particles and Secondary Inorganic Compounds at Mount Dinghu in Autumn Season. Environ. Sci. 2011, 32, 3160–3166. [Google Scholar]
- Kalisa, E.; Nagato, E.; Bizuru, E. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. J. Atmos. Pollut. Res. 2019, 10, 1396–1403. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in US air quality studies. Atmos. Environ. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Yang, X.Y.; Igarashi, K.; Tang, N. Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. J. Mutat. Res./Genet. Toxicol. Environ. Mutagenes. 2010, 695, 29–34. [Google Scholar] [CrossRef]
- Wang, W. Inorganic and Organic Speciation of Atmospheric Aerosols by Ion Chromatography and Aerosol Chemical Mass Closure. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2010. [Google Scholar]
- Xue, Y.Y.; Liu, G.H.; Tian, H.J.; Wu, T. Determination of Heavy Metal Elements in PM2.5 in Taiyuan by ICP-MS. Guangzhou Chem. 2016, 41, 45–48. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. GB 3095-2012 Ambient Air Quality Standard; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2016. [Google Scholar]
- Zhang, L.L.; Dao, X.; Wang, C. Characterization of air particulate matters and elements in four national background locations, China. J. Environ. Chem. 2015, 34, 70–76. [Google Scholar]
- Dao, X.; Wang, C.; Zhang, L.L. Characteristics of mass and water-soluble ionic compounds in atmospheric particles (PM2.5\PM10) of four National Atmospheric Backgrounds. J. Environ. Chem. 2015, 34, 1095–1102. [Google Scholar]
- Lim, S.; Lee, M.; Lee, G.; Kim, S.; Yoon, S.; Kang, K. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos. Chem. Phys. 2012, 12, 2007–2024. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Bae, G.N.; Moon, K.C. Characteristics of TSP and PM2.5 measured at Tokchok Island in the Yellow Sea. J. Atmos. Environ. 2002, 36, 5427–5435. [Google Scholar] [CrossRef]
- Maenhaut, W.; Raes, N.; Chi, X.G. Chemical composition and mass closure for PM2.5 and PM10 aerosols at K-puszta, Hungary, in summer 2006. J. X-ray Spectrom. 2008, 37, 193–197. [Google Scholar] [CrossRef]
- Chi, X.G. Development of Improved Sampling and Analysis Method for Measuring Organic, Elemental, and Water Soluble Organic Carbon in Atmospheric Aerosols and Application to Aerosol Studies in Europe and Tropical/Equatorial and Oceanic Regions. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2009. [Google Scholar]
- Barmpadimos, I.; Keller, J.; Oderbolz, D. One decade of parallel fine (PM2.5) and coarse (PM10-PM2.5) particulate matter measurements in Europe: Trends and variability. J. Atmos. Chem. Phys. Atmos. Chem. Phys. 2012, 12, 3189–3203. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.K.; Chan, C.Y.; Zhang, Y.N.; Eng, L.G.; Zhang, Z.S.; Sang, X.F.; Wang, X.M. Characteristics and sources of carbonaceous aerosols in spring at four background sites in South China. China Environ. Sci. 2010, 30, 1543–1549. [Google Scholar]
- Li, A.N.; Wen, T.X.; Hua, W.; Yang, Y.; Meng, Z.; Hu, B.; Xin, J.Y. Characterization and Size Distribution of Carbonaceous Aerosols at Mountain Dinghu. Environ. Sci. 2020, 41, 3908–3917. [Google Scholar]
- Zhang, D.; Chu, B.M.; Zhao, L.; Xia, P.C.; Yao, Y.W.; Wang, X.Q.; Xie, G.; Zhao, K. Characteristics and Source of Carbonaceous Species in PM of Lhasa City. Environ. Impact Assess. 2018, 40, 65–70. [Google Scholar]
- Appel, B.R.; Colodny, P.; Wesolowski, J.J. Analysis of carbonaceous material in Southern California atmospheric aerosols. J. Environ. Sci. Technol. 1976, 10, 359–363. [Google Scholar] [CrossRef]
- Chow, J.C.; Waston, J.G.; Lu, Z. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. J. Atmos. Environ. 1996, 30, 2079–2112. [Google Scholar] [CrossRef]
- Wang, Y.N.; Jia, C.H.; Tao, J. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. J. Sci. Total Environ. 2016, 573, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Z.; Min, S.; Yuan, H.Z. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167–175. [Google Scholar]
- Mei, D.Q.; Zhu, Z.N.; Sun, T.S.; Wang, X.L.; Mei, C.W.; Xiao, Z.Z. Size Distribution and Carbon Component Characteristics of Atmospheric Particulate Matter from Motor Vehicles. Environ. Sci. 2019, 40, 114–120. [Google Scholar]
- Li, Y.H.; Rao, Z.G.; Tan, J.H.; Duan, J.C.; Ma, Y.L.; He, K.B. Pollutional Characteristics and Sources Analysis of Polycyclic Aromatic Hydrocarbons in Atmospheric Fine Particulate Matter in Lanzhou City. Environ. Sci. 2016, 37, 2428–2435. [Google Scholar]
- Xia, B.X.; Ji, Z.Y.; Han, X.Y.; Zhang, C.N.; Ning, P.; Shi, J.W. Pollution characteristics and health risk assessment of PAHs in atmospheric particulates in Yuxi city. J. Environ. Chem. 2020, 39, 2093–2104. [Google Scholar]
- Wang, C.; Dao, X.; Zhang, L.L.; Lv, Y.B.; Teng, E.J. Characteristics and toxicity assessment of airborne particulate polycyclic aromatic hydrocarbons of four background sites in China. China Environ. Sci. 2015, 35, 3543–3549. [Google Scholar] [CrossRef]
- Souza, K.F.; Carvalho, L.R.F.; Allen, A.G.; Cardoso, A.A. Diurnal and nocturnal measurements of pah, nitro-pah, and oxy-pah compounds in atmospheric particulate matter of a sugar cane burning region. Atmos. Environ. 2014, 83, 193–201. [Google Scholar] [CrossRef]
- MA, S.X.; Zhang, X.; Chen, L.G.; Liu, M.; Tang, C.M.; Su, Y.H. Characteristics of PAHs concentration in the atmospheric PM2.5 in Wuzhi Mountain background in Hainan, South China. J. Environ. Sci. 2013, 33, 103–107. [Google Scholar]
- Niu, H.Y.; Zhao, X.; Dai, Z.X.; Wang, G.H.; Wang, L.S. Characterization, source apportionment of particulate matter and n-Alk in atmospheric aerosols in Nanjing City. J. Environ. Pollut. Control 2005, 27, 363–367. [Google Scholar]
- Rajput, P.; Sarin, M.M.; Rengarajan, R. Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: Isomer ratios and temporal trends. J. Atmos. Environ. 2011, 45, 6732–6740. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Tan, J.H.; Bi, X.H.; He, Q.; Sheng, G.Y.; Fu, J.M. Emission characteristics of polycyclic aromatic hydrocarbons from three types of agricultural straw burning smoke. J. China Environ. Sci. 2015, 35, 1065–1071. [Google Scholar]
- Mark, B.Y.; Robie, W.M.; Roxanne, V.; Reginald, H.; Darcy, G.; Stephanie, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar]
- Liu, E.L.; Wang, F.H. Analysis on Source of the Polycyclic Aromatic Hydrocarbons in Jinan’s Atmosphere. J. Environ. Monit. China 2007, 23, 58–62. [Google Scholar]
- Tania, M.; Martina, G.; Luciano, L. One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. J. Environ. Pollut. 2012, 164, 252–258. [Google Scholar]
- Masiol, M.; Hofer, A.; Squizzato, S.; Piazza, R.; Rampazzo, G.; Pavoni, B. Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. J. Atmos. Environ. 2012, 60, 375–382. [Google Scholar] [CrossRef]
- Kang, M.; Kim, K.; Choi, N. Recent Occurrence of PAHs and n-Alkanes in PM2.5 in Seoul, Korea and Characteristics of Their Sources and toxicity. J. Int. J. Environ. Res. Public Health 2020, 17, 1397. [Google Scholar] [CrossRef] [Green Version]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. J. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Galarneau, E. Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. J. Atmos. Environ. 2008, 42, 8139–8149. [Google Scholar] [CrossRef]
- Chuesaard, T.; Chetiyanukornkul, T.; Kameda, T.; Hayakawa, K.; Toriba, A. Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. J. Aerosol Air Qual. Res. 2014, 14, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, C.; Shen, H.; Su, S.; Shen, G.; Huang, Y.; Zhang, Y.; Chen, Y.; Chen, H.; Lin, N.; et al. Concentrations and origins of nitro- polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China. J. Environ. Pollut. 2015, 197, 156–164. [Google Scholar] [CrossRef]
- Kojima, Y.; Inazu, K.; Hisamatsu, Y.; Okochi, H.; Baba, T.; Nagoya, T. Influence of secondary formation on atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles. J. Atmos. Environ. 2010, 44, 2873–2880. [Google Scholar] [CrossRef]
- Osada, K.; Kido, M.; Nishita, C. Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770m a.s.l.), central Japan, during the Shurin period in 2000. J. Atmos. Environ. 2002, 36, 5469–5477. [Google Scholar] [CrossRef]
- Zhang, N.N.; Cao, J.J.; Ho, K.F.; He, Y.Q. Chemical characterization of aerosol collected at Mt. Yulong in wintertime on the southeastern Tibetan Plateau. Atmos. Res. 2012, 107, 76–85. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Wang, Y.S.; Wen, T.X.; Yang, Y.J.; Li, W. Observation and Analysis on Water-soluble Inorganic Chemical Compositions of Atmospheric Aerosol in Gongga Mountain. Environ. Sci. 2009, 30, 9–13. [Google Scholar]
- Zhao, Y.N.; Wang, Y.S.; Wen, T.X.; Dai, G.H. Observation and Analysis of Water-Soluble Inorganic Ions in PM2.5 From Mount Changbai. Environ. Chem. 2011, 30, 812–815. [Google Scholar]
- Lee, C.T.; Chuang, M.T.; Lin, N.H.; Wang, J.L.; Sheu, G.R.; Chang, S.C.; Wang, S.T.; Huang, H.; Chen, H.W.; Liu, Y.L.; et al. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. J. Atmos. Environ. 2011, 45, 5784–5794. [Google Scholar] [CrossRef]
- Chow, J.C. Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manag. Assoc. 1995, 45, 320–382. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Maenhaut, W.; Yang, W.; Liu, X.D.; Bai, Z.P.; Zhang, T.; Claeys, M.; Cachier, H.; Dong, S.P.; Wang, Y.L. One–year aerosol characterization study for PM2.5 and PM10 in Beijing. J. Atmos. Pollut. Res. 2014, 5, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Chuang, M.T.; Chou, C.K.; Sopajaree, K.; Lin, N.-H.; Wang, J.-L.; Sheu, G.-R.; Chang, Y.-J.; Lee, C.-T. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. J. Atmos. Environ. 2013, 78, 72–81. [Google Scholar] [CrossRef]
- Yang, Y.J.; Wang, Y.S.; Wen, T.X.; Zhao, Y.N.; Li, J. Element Characteristics and Sources of PM2.5 at Mount Dinghu in 2006. J. Environ. Sci. 2009, 30, 988–992. [Google Scholar]
- Pan, Y.; Wang, Y.; Sun, Y.; Tian, S.; Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. J. Sci. Total Environ. 2013, 461, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.W.; Li, Z.Z.; Sun, Z.R.; Han, X.Y.; Shi, Z.; Xiang, F.; Ning, P. Specific features of heavy metal pollutant residue in PM2.5 and analysis of their damage level for human health in the urban air of Kunming. J. Saf. Environ. 2018, 18, 795–800. [Google Scholar]
- Zhou, X.M.; Zheng, N.J.; Li, Y.H.; Duan, J.C.; Tan, J.H.; Zhang, Y.X.; He, K.B.; Ma, Y.L. Chemical Characteristics and Sources of Heavy Metals in Fine Particles in Beijing in 2011–2012. J. Environ. Sci. 2017, 38, 4054–4060. [Google Scholar]
- Peng, X.; Shi, G.; Liu, G.; Xu, J.; Tian, Y.; Zhang, Y.; Feng, Y.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2 -HMHR model. Environ. Pollut. 2017, 211, 335–342. [Google Scholar] [CrossRef]
- Wang, S.; Hu, G.; Yan, Y.; Wang, S.; Yu, R.; Cui, J. Source apportionment of metal elements in PM2.5 in a coastal city in southeast china: Combined pb-sr-nd isotopes with pmf method. Atmos. Environ. 2018, 198, 302–312. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Wang, F.; Liu, S.M.; Zhang, W.J. Source analysis of heavy metal elements of PM2.5 in canteen in a university in winter. Atmos. Environ. 2021, 244, 117879. [Google Scholar] [CrossRef]
- Yang, T.J.; Yu, H.Y.; He, Y.J.; Miao, Y.G.; Gao, Y.G.; Li, N.; Wang, W. Characterization of Elemental Compositions and Their Sources of PM2.5 in Tangshan City. J. Res. Environ. Sci. 2020, 33, 52–61. [Google Scholar]
- Hao, Y.F.; Luo, B.; Simayi, M.; Zhang, W.; Jiang, Y.; He, J.M.; Xie, S.D. Spatiotemporal patterns of PM2.5 elemental composition over China and associated health risks. Environ. Pollut. 2020, 265, 114910. [Google Scholar] [CrossRef]
No. | Compound | Abbreviation | Rings |
---|---|---|---|
1 | Fluoranthene | Flt | 4 |
2 | Pyrene | Pyr | 4 |
3 | Benz(a)anthracene | BaA | 4 |
4 | Chrysene | Chr | 4 |
5 | Benzo(b)flfluoranthene | BbF | 5 |
6 | Benzo(k)flfluoranthene | BkF | 5 |
7 | Benzo(a)pyrene | BaP | 5 |
8 | Dibenz(a,h)anthracene | DBA | 5 |
9 | Benzo(g,h,i)perylene | BghiPe | 6 |
10 | Indeno(1,2,3-cd)pyrene | IDP | 6 |
11 | 1,6-Dinitropyrenes | 1,6-DNP | |
1,8-Dinitropyrenes | 1,8-DNP | ||
1,3-Dinitropyrenes | 1,3-DNP | ||
9-Nitrophenanthrene | 9-Nph | ||
2-Nitroanthracene | 2-NA | ||
9-Nitroanthracene | 9-NA | ||
4-Nitropyrene | 4-NP | ||
3-Nitrofluoranthene | 3-NFR | ||
1-Nitropyrene | 1-NP | ||
1-Nitrofluoranthene | 1-NFR | ||
2-Nitrotriphenylene | 2-NTP | ||
6-Nitrochrysene | 6-NC | ||
7-Nitrobenz[a]anthracene | 7-NBaA | ||
3-Nitroperylene | 3-Nper | ||
6-Nitrobenzo[a]pyrene | 6-NBaP | ||
1-Nitroperylene | 1-NPer | ||
3-Nitrobenz[a]anthracene | 3-NBA | ||
2-nitrofluoranthene | 2-NFr |
Sites | Countries | Periods | PM2.5 | PM10 | PM2.5/PM10 (range) | Literature |
---|---|---|---|---|---|---|
Lijiang | China | 2011, Spring | 14.4 | 40.4 | 0.37(0.20–0.58) | This study |
Changbaishan | China | 2013 | 13 | 18 | (0.55–0.84) | [24,25] |
Pangquangou | China | 2013 | 18 | 44 | (0.17–0.74) | [24,25] |
Shennongjia | China | 2013 | 15 | 38 | (0.24–0.75) | [24,25] |
Nanling | China | 2013 | 21 | 30 | (0.54–0.82) | [24,25] |
Gosan | Korea | 2007–2008 | 17.2 | 28.4 | [26] | |
Tokchok | Korea | 1999–2000 | 18.7 | [27] | ||
K-puszta (PM2) | Hungary | 2003, Summer | 13.6 | 24 | (0.57 ± 0.06) | [21] |
K-puszta | Hungary | 2006, Summer | 17.4 | 25 | (0.67 ± 0.08) | [28,29] |
Illmitz | Austria | 1998–2010 | 20 | 25 | [30] | |
Langenbruegge | Germany | 1998–2010 | 13 | 17 | [30] | |
Payerne | Switzerland | 1998–2010 | 17 | 20 | [30] | |
Penausende | Spain | 1998–2010 | 8 | 12 | [30] |
Abbreviation | 6 Apr. | 7 Apr. | 8 Apr. | 9 Apr. | 10 Apr. | 11 Apr. | 12 Apr. | 13 Apr. | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|
Flt | 2.9 | 2.9 | 3.2 | 5.9 | 1.9 | 1.6 | 1.3 | 2.0 | 2.7 ± 1.5 |
Pyr | 1.9 | 1.9 | 1.9 | 3.3 | 1.6 | 1.1 | 0.8 | 1.4 | 1.7 ± 0.8 |
BaA | 1.1 | 1.0 | 1.2 | 2.3 | 0.7 | 0.5 | 0.3 | 0.6 | 1.0 ± 0.6 |
Chr | 1.8 | 1.7 | 2.2 | 3.4 | 1.1 | 0.9 | 0.6 | 1.0 | 1.6 ± 0.9 |
BbF | 1.4 | 1.2 | 1.6 | 2.3 | 0.9 | 0.8 | 0.6 | 1.1 | 1.2 ± 0.5 |
BkF | 0.8 | 0.7 | 0.8 | 1.3 | 0.5 | 0.4 | 0.3 | 0.5 | 0.7 ± 0.3 |
BaP | 1.1 | 1.1 | 1.2 | 2.0 | 0.9 | 0.7 | 0.6 | 0.9 | 1.1 ± 0.4 |
DBA | 0.03 | 0.02 | 0.04 | 0.08 | 0.03 | 0.03 | 0.01 | 0.02 | 0.03 ± 0.02 |
BghiPe | 1.0 | 0.8 | 1.0 | 1.4 | 0.7 | 0.7 | 0.6 | 0.9 | 0.9 ± 0.3 |
IDP | 1.1 | 1.0 | 1.3 | 2.0 | 0.7 | 0.6 | 0.5 | 0.8 | 1.0 ± 0.5 |
Total | 13.0 | 12.2 | 14.4 | 23.8 | 9.1 | 7.5 | 5.7 | 9.3 | 11.9 ± 5.6 |
IDP/(BghiPe + IDP) | BaA/(Chr + BaA) | Flt/(Flt + Pyr) | |
---|---|---|---|
This study | 0.53 ± 0.04 | 0.45 ± 0.01 | 0.61 ± 0.03 |
Biomass burning | 0.48–0.58 [45,46,47,48] | >0.5 [49] | 0.43–0.58 [45,46,48] |
Coal combustion | >0.5 [47,48] | 0.2–0.5 [47,49] | >0.5 [50] |
Diesel vehicles | 0.35–0.70 [47,48] | <0.2 [47] | 0.6–0.7 [50] |
Gasoline vehicles | <0.2 [47] | 0.2–0.35 [49] | <0.5 [48,50] |
Abbreviation | 6 Apr. | 7 Apr. | 8 Apr. | 9 Apr. | 10 Apr. | 11 Apr. | 12 Apr. | 13 Apr. | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|
1,6-DNP | 0.14 | 0.12 | 0.15 | 0.12 | 0.10 | 0.11 | 0.08 | 0.09 | 0.11 ± 0.02 |
1,8-DNP | 0.20 | 0.24 | 0.32 | 0.26 | 0.20 | 0.22 | 0.17 | 0.17 | 0.22 ± 0.05 |
1,3-DNP | 0.24 | 0.14 | 0.18 | 0.15 | 0.12 | 0.12 | 0.09 | 0.11 | 0.14 ± 0.05 |
9-Nph | ND | 7.37 | 8.48 | 12.28 | 4.24 | ND | ND | ND | 8.1 ± 3.3 |
2-NA | 0.63 | 0.69 | 0.83 | 0.92 | 0.45 | 0.42 | 0.36 | 0.47 | 0.59 ± 0.20 |
9-NA | 92 | 62 | 89 | 115 | 50 | 38 | 15 | 69 | 66 ± 32 |
4-NP | 0.54 | 0.67 | 0.77 | 0.79 | 0.47 | 0.49 | 0.52 | 0.64 | 0.61 ± 0.12 |
3-NFR | 0.74 | 0.87 | 1.03 | 0.76 | 0.55 | 0.57 | 0.40 | 0.49 | 0.68 ± 0.21 |
1-NP | 12.12 | 12.61 | 13.35 | 9.64 | 9.64 | 11.13 | 8.65 | 8.90 | 10.8 ± 1.8 |
1-NFR | 7.18 | 17.11 | 22.81 | 8.24 | 3.80 | 10.98 | 17.11 | 4.01 | 11.4 ± 6.9 |
2-NTP | 386 | 307 | 302 | 328 | 171 | 137 | 38 | 168 | 230 ± 118 |
6-NC | 21 | 22 | 29 | 34 | 16 | 20 | 16 | 21 | 22 ± 6.0 |
7-NBaA | 15.58 | 9.57 | 10.11 | 9.02 | 5.74 | 6.29 | 2.51 | 5.47 | 8.0 ± 4.0 |
3-Nper | 0.89 | 0.95 | 1.31 | 0.89 | 0.80 | 0.77 | 0.77 | 0.80 | 0.90 ± 0.18 |
6-NBaP | 3.87 | 3.57 | 4.16 | 2.82 | 2.53 | 2.68 | 2.38 | 2.35 | 3.04 ± 0.71 |
1-NPer | 1.78 | 1.13 | 1.19 | 1.52 | 1.22 | 0.83 | 0.80 | 1.07 | 1.19 ± 0.33 |
3-NBA | ND * | ND | ND | ND | ND | ND | ND | ND | |
2-NFr | ND * | ND | ND | ND | ND | ND | ND | ND | |
Total | 450 | 376 | 385 | 396 | 213 | 191 | 87 | 212 | 289 ± 129 |
Year, Location, Ref. | Ca | Mg | Fe | K | Mn | Zn | Cu | Cr | As |
---|---|---|---|---|---|---|---|---|---|
2011, Lijiang, this study | 0.59 | 0.18 | 0.16 | 0.083 | 0.0031 | 0.017 | 0.0083 | 0.0080 | 0.00018 |
2013, 4 NAB sites [24] | 0.13 | 0.10 | 0.050 | 0.16 | 0.0080 | 0.020 | 0.0035 | 0.0020 | 0.0027 |
2006, Mt. Dinghu [65] | 0.83 | 0.16 | 0.57 | 1.36 | 0.033 | 0.43 | 0.060 | UD | 0.031 |
2008, Xinglong * [66] | 2.5 | 0.54 | 0.89 | 0.85 | 0.029 | 0.14 | 0.043 | 0.079 | 0.013 |
2013, Kunming [67] | ND | ND | ND | ND | 0.16 | 0.33 | 0.078 | 0.030 | 0.03 |
2012, Beijing [68] | ND | ND | ND | ND | 0.082 | 0.23 | 0.040 | 0.0078 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, X.; Wang, W.; Yin, B.; Gao, Y.; Yang, X. Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China. Int. J. Environ. Res. Public Health 2020, 17, 9553. https://doi.org/10.3390/ijerph17249553
Liu Y, Li X, Wang W, Yin B, Gao Y, Yang X. Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China. International Journal of Environmental Research and Public Health. 2020; 17(24):9553. https://doi.org/10.3390/ijerph17249553
Chicago/Turabian StyleLiu, Yu, Xurui Li, Wan Wang, Baohui Yin, Yuanguan Gao, and Xiaoyang Yang. 2020. "Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China" International Journal of Environmental Research and Public Health 17, no. 24: 9553. https://doi.org/10.3390/ijerph17249553
APA StyleLiu, Y., Li, X., Wang, W., Yin, B., Gao, Y., & Yang, X. (2020). Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China. International Journal of Environmental Research and Public Health, 17(24), 9553. https://doi.org/10.3390/ijerph17249553