A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models
Abstract
:1. Introduction
2. Materials and Methods
- Web of Science: TITLE: (beef OR cattle OR boeuf) AND TITLE: (risk* OR risque* OR “risk assessment” OR aqr OR qmra OR exposure OR “model$ing”)
- Scopus: TITLE (beef OR cattle OR bœuf) AND TITLE (risk* OR risque* OR “risk assessment” OR aqr OR qmra OR exposure OR modeling OR modelling)
3. Results
3.1. Risk Question
3.2. Identification of Main Hazards in Beef Products
3.3. Exposure Assessment
3.3.1. Farm: Livestock Rearing
3.3.2. Slaughterhouse
3.3.3. Post-Slaughtering: Processing and Retail
3.3.4. Consumer Practices
3.4. Dose/Response Relationships
3.5. Risk Characterization
3.6. Modelling Approaches
3.6.1. Top-Down and Bottom-Up Studies
3.6.2. Predictive Microbiology
3.6.3. Sensitivity and Scenarios Analysis
3.6.4. Validation of Models
3.6.5. Uncertainties and Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar]
- EFSA; ECDPC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013: EU summary report on zoonoses, zoonotic agents and food-borne outbreaks 2013. EFSA J. 2015, 13, 3991. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Mota, J. Risks and benefits associated with red meat consumption in France. Presented at the IAFP’s European Symposium on Food Safety, La Cite Nantes Congress Center, Nantes, France, 24–26 April 2019. [Google Scholar]
- Codex Alimentarius Commission. Principles and Guidelines for the Conduct of Microbiological Risk Assessment (CAC/GL-30-1999); World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Codex Alimentarius Commission. Working Principles for Risk Analysis for Food Safety for Application by Governments (CAC/GL 62-2007); World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Codex Alimentarius Commission. Principles and Guidelines for the Conduct of Microbiological Risk Management (MRM) (CAC/GL 63-2007); World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Codex Alimentarius Commission. Working Principles for Risk Analysis Application in the Framework of the Codex Alimentarius (CAC/GL 62-2007); World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Haas, C.N. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am. J. Epidemiol. 1983, 118, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-14529-6. [Google Scholar]
- Haas, C.N.; Rose, J.B.; Gerba, C.; Regli, S. Risk assessment of virus in drinking water. Risk Anal. 1993, 13, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Macler, B.A.; Regli, S. Use of microbial risk assessment in setting US drinking water standards. Int. J. Food Microbiol. 1993, 18, 245–256. [Google Scholar] [CrossRef]
- Membré, J.-M.; Boué, G. Quantitative microbiological risk assessment in food industry: Theory and practical application. Food Res. Int. 2018, 106, 1132–1139. [Google Scholar] [CrossRef]
- Haberbeck, L.U.; Plaza-Rodríguez, C.; Desvignes, V.; Dalgaard, P.; Sanaa, M.; Guillier, L.; Nauta, M.; Filter, M. Harmonized terms, concepts and metadata for microbiological risk assessment models: The basis for knowledge integration and exchange. Microb. Risk Anal. 2018, 10, 3–12. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Nauta, M.; Evers, E.; Takumi, K.; Havelaar, A. Risk Assessment of Shiga-Toxin Producing Escherichia Coli O157 in Steak Tartare in the Netherlands; 2001. Available online: http://hdl.handle.net/10029/9409 (accessed on 17 January 2020).
- Kosmider, R. EU0701: A UK VTEC O157 Risk Assessment Model for Meat Products; Veterinary Laboratories Agency: Webbridge, UK, 2010. [Google Scholar]
- Mellor, D.; Innocent, G.; McEwen, S.; Reilly, W.; Taylor, D.; Steele, W.; Gunn, G.; Ternent, H.; Reid, S. A semi-quantitative risk assessment model for contamination of beef carcasses with Escherichia coli O157. In Food Safety Assurance and Veterinary Public Health; Smulders, F.J.M., Collins, J.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; Volume 2, pp. 386–388. [Google Scholar]
- Evers, E.G.; Pielaat, A.; Smid, J.H.; van Duijkeren, E.; Vennemann, F.B.; Wijnands, L.M.; Chardon, J.E. Comparative exposure assessment of ESBL-producing Escherichia coli through meat consumption. PLoS ONE 2017, 12, e0169589. [Google Scholar] [CrossRef]
- Cassin, M.H.; Lammerding, A.M.; Todd, E.C.D.; Ross, W.; McColl, R.S. Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers. Int. J. Food Microbiol. 1998, 41, 21–44. [Google Scholar] [CrossRef]
- AFSSA. Appréciation Quantitative des Risques Liés à Escherichia coli O157:H7 Dans les Steaks Hachés Surgelés Consommés en Restauration Familiale en France Par les Enfants de Moins de 16 Ans 2007; AFSSA: Austin, TX, USA, 2007. [Google Scholar]
- Delignette-Muller, M.L.; Cornu, M. Quantitative risk assessment for Escherichia coli O157:H7 in frozen ground beef patties consumed by young children in French households. Int. J. Food Microbiol. 2008, 128, 158–164. [Google Scholar] [CrossRef] [PubMed]
- ANSES. Avis de l’Agence Nationale de la Sécurité Sanitaire de L’Alimentation, de L’Environnement et du Travail Relatif à la Révision de la Définition des E. coli Entéro-Hémorragiques (EHEC) Majeurs Typiques, à L’Appréciation Quantitative des Risques liés à ces Bactéries à Différentes Étapes de la Chaîne Alimentaire, Selon les Différents Modes de Consommation des Steaks Hachés, et à la Prise en Compte du Danger lié aux E. coli Entéro-Pathogènes (EPEC) dans les Aliments; ANSES: Buenos Aires, Argentina, 2010; p. 58. [Google Scholar]
- Ebel, E.; Schlosser, W.; Orloski, K.; Kause, J.; Roberts, T.; Narrod, C.; Malcolm, S.; Coleman, M.; Powell, M. A Risk Assessment of Escherichia Coli O157: H7 in Ground Beef. In Microbial Food Safety in Animal Agriculture: Current Topics; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 313–324. [Google Scholar]
- Kiermeier, A.; Jenson, I.; Sumner, J. Risk Assessment of Escherichia coli O157 Illness from Consumption of Hamburgers in the United States Made from Australian Manufacturing Beef. Risk Anal. 2015, 35, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, O.; Ogden, I.D.; MacRITCHIE, L.; Forbes, K.J.; Williams, A.P.; Cross, P.; Hunter, C.J.; Teunis, P.F.M.; Strachan, N.J.C. Combining risk assessment and epidemiological risk factors to elucidate the sources of human E. coli O157 infection. Epidemiol. Infect. 2012, 140, 1414–1429. [Google Scholar] [CrossRef] [Green Version]
- Brookes, V.J.; Jordan, D.; Davis, S.; Ward, M.P.; Heller, J. Saltelli global sensitivity analysis and simulation modelling to identify intervention strategies to reduce the prevalence of Escherichia coli O157 contaminated beef carcasses. PLoS ONE 2015, 10, e0146016. [Google Scholar] [CrossRef]
- Brown, V.R.; Ebel, E.D.; Williams, M.S. Risk assessment of intervention strategies for fallen carcasses in beef slaughter establishments. Food Control 2013, 33, 254–261. [Google Scholar] [CrossRef]
- ANSES. Avis de L’Agence Nationale de Sécurité Sanitaire de L’Alimentation, de L’Environnement et du Travail Relatif à la Détection des E. coli Producteurs de Shigatoxines (STEC) Considérés Comme Hautement Pathogènes en Filière Viande Hachée Bovine; ANSES: Buenos Aires, Argentina, 2017; p. 54. [Google Scholar]
- Duffy, G.; O’Brien, S.; Carney, E.; Butler, F.; Cummins, E.; Nally, P.; Mahon, D.; Henchion, M.; Cowan, C. A Quantitative Risk Assessment of E. coli 0157:H7 in Irish Minced Beef; Teagasc: Carlow, Ireland, 2005. [Google Scholar]
- Cummins, E.; Nally, P.; Butler, F.; Duffy, G.; O’Brien, S. Development and validation of a probabilistic second-order exposure assessment model for Escherichia coli O157:H7 contamination of beef trimmings from Irish meat plants. Meat Sci. 2008, 79, 139–154. [Google Scholar] [CrossRef]
- Duffy, G.; Butler, F.; Cummins, E. E. coli O157:H7 in Beefburgers Produced in the Republic of Ireland: A Quantitative Microbial Risk Assessment; Ashtown Food Research Centre: Dublin, Ireland, 2006. [Google Scholar]
- Ebel, E.; Schlosser, W.; Kause, J.; Orloski, K.; Roberts, T.; Narrod, C.; Malcolm, S.; Coleman, M.; Powell, M. Draft risk assessment of the public health impact of Escherichia coli O157:H7 in ground beef. J. Food Prot. 2004, 67, 1991–1999. [Google Scholar] [CrossRef]
- USDA-FSIS. Risk Assessment of the Public Health Impact of Escherichia coli O157:H7 in Ground Beef; U.S. Department of Agriculture, Food Safety and Inspection Service: Washington, DC, USA, 2001; p. 171. Available online: https://www.fsis.usda.gov/wps/wcm/connect/1db13d79-1cd9-4e4d-b6ca-16ad89a085a1/00-023NReport.pdf?MOD=AJPERES (accessed on 19 January 2020).
- Signorini, M.; Tarabla, H. Quantitative risk assessment for verocytotoxigenic Escherichia coli in ground beef hamburgers in Argentina. Int. J. Food Microbiol. 2009, 132, 153–161. [Google Scholar] [CrossRef]
- Smith, B.A.; Fazil, A.; Lammerding, A.M. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: Evaluating the effects of interventions. Food Control 2013, 29, 364–381. [Google Scholar] [CrossRef] [Green Version]
- Gonzales-Barrón, U.; Piza, L.; Xavier, C.; Costa, E.; Cadavez, V. An exposure assessment model of the prevalence of Salmonella spp. along the processing stages of Brazilian beef. Food Sci. Technol. Int. 2016, 22, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manyori, C.I.; Mumba, C.; Muma, J.B.; Mwale, M.M.; Munyeme, M.; Bwanga, E.K.; Häsler, B.; Rich, K.M.; Skjerve, E. Quantitative risk assessment of developing salmonellosis through consumption of beef in Lusaka Province, Zambia. Food Control 2017, 73, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Tuominen, P.; Ranta, J.; Maijala, R. Salmonella risk in imported fresh beef, beef preparations, and beef products. J. Food Prot. 2006, 69, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Tuominen, P.; Ranta, J.; Maijala, R. Studying the effects of POs and MCs on the Salmonella ALOP with a quantitative risk assessment model for beef production. Int. J. Food Microbiol. 2007, 118, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Guillier, L.; Danan, C.; Bergis, H.; Delignette-Muller, M.-L.; Granier, S.; Rudelle, S.; Beaufort, A.; Brisabois, A. Use of quantitative microbial risk assessment when investigating foodborne illness outbreaks: The example of a monophasic Salmonella Typhimurium 4, 5, 12: I:-Outbreak implicating beef burgers. Int. J. Food Microbiol. 2013, 166, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Dayhum, A. Quantitative risk assessment model of human salmonellosis linked to the consumption of ground beef. Ph.D. Thesis, AgroParisTech, Paris, France, 2008. Available online: https://pastel.archives-ouvertes.fr/pastel-00003795 (accessed on 17 January 2020).
- Li, M.; Malladi, S.; Hurd, H.S.; Goldsmith, T.J.; Brichta-Harhay, D.M.; Loneragan, G.H. Salmonella spp. in lymph nodes of fed and cull cattle: Relative assessment of risk to ground beef. Food Control 2015, 50, 423–434. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, J.; Lee, H.; Lee, S.; Kim, S.; Ha, J.; Yoon, K.-S.; Yoon, Y. Quantitative microbial risk assessment for campylobacter foodborne illness in raw beef offal consumption in South Korea. J. Food Prot. 2017, 80, 609–618. [Google Scholar] [CrossRef]
- Starkey, S.R.; White, M.E.; Mohammed, H.O. Cryptosporidium and dairy cattle in the Catskill/Delaware watershed: A quantitative risk assessment. Risk Anal. 2007, 27, 1469–1485. [Google Scholar] [CrossRef]
- Foerster, C.; Figueroa, G.; Evers, E. Risk assessment of Listeria monocytogenes in poultry and beef. Br. Food J. 2015, 117, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, N.M.; Donnelly, C.A. Assessment of the risk posed by bovine spongiform encephalopathy in cattle in Great Britain and the impact of potential changes to current control measures. Proc. Biol. Sci. 2003, 270, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Kiermeier, A.; Hamilton, D.; Pointon, A. Quantitative risk assessment for human Taenia saginata infection from consumption of Australian beef. Microb. Risk Anal. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Dewell, G.A.; Simpson, C.A.; Dewell, R.D.; Hyatt, D.R.; Belk, K.E.; Scanga, J.A.; Morley, P.S.; Grandin, T.; Smith, G.C.; Dargatz, D.A.; et al. Risk associated with transportation and lairage on hide contamination with Salmonella enterica in finished beef cattle at slaughter. J. Food Prot. 2008, 71, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, F.C.; Giannuzzi, L.; Zaritzky, N.E. Mathematical modelling of microbial growth in ground beef from Argentina. Effect of lactic acid addition, temperature and packaging film. Meat Sci. 2008, 79, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Cenkowski, S.; Blank, G.; Chung-Lewis, M. Modelling of Listeria monocytogenes growth in pre-sterilized ground beef as affected by fat content, temperature, and atmosphere. Can. Biosyst. Eng. Genie Biosyst. Can. 2002, 44, 3.11–3.16. [Google Scholar]
- Chai, C.; Jang, H.; Oh, S.-W. Real-time PCR-based quantification of Shigella sonnei in beef and a modified Gompertz equation-based predictive modeling of its growth. Appl. Biol. Chem. 2016, 59, 67–70. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Sheen, S.; Sommers, C.; Sheen, L.-Y. Modeling the inactivation of Escherichia coli O157:H7 and Uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control 2017, 73, 672–680. [Google Scholar] [CrossRef]
- Davey, K.R.; Chandrakash, S. Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli 0157:H7 in ground beef. Food Res. Int. 2015, 75, 11–12. [Google Scholar] [CrossRef]
- Ding, C.; Lu, J.; Song, Z.; Bao, S. The drying efficiency of electrohydrodynamic (EHD) systems based on the drying characteristics of cooked beef and mathematical modeling. Int. J. Appl. Electromagn. Mech. 2014, 46, 455–461. [Google Scholar] [CrossRef]
- Ding, T.; Rahman, S.M.E.; Purev, U.; Oh, D.-H. Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J. Food Eng. 2010, 97, 497–503. [Google Scholar] [CrossRef]
- Flores, R.A. Modeling the Behavior and Fate of Microbial Pathogens in Beef Processing Particle Reduction Operations. In Advances in Microbial Food Safety; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2006; Volume 931, pp. 219–233. ISBN 978-0-8412-3915-9. [Google Scholar]
- Giannuzzi, L.; Pinotti, A.; Zaritzky, N. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. Int. J. Food Microbiol. 1998, 39, 101–110. [Google Scholar] [CrossRef]
- Hong, Y.-K.; Huang, L.; Yoon, W.B. Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef. Food Control 2016, 60, 471–477. [Google Scholar] [CrossRef]
- Huang, L.; Tu, S.-I.; Phillips, J.; Fratamico, P. Mathematical Modeling of Growth of Non-O157 Shiga Toxin-Producing Escherichia coli in Raw Ground Beef. J. Food Sci. 2012, 77, M217–M225. [Google Scholar] [CrossRef] [PubMed]
- Jaloustre, S.; Cornu, M.; Morelli, E.; Noël, V.; Delignette-Muller, M.L. Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products. Food Microbiol. 2011, 28, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Jaloustre, S.; Guillier, L.; Morelli, E.; Noël, V.; Delignette-Muller, M.L. Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: A meta-analysis using mixed linear models. Int. J. Food Microbiol. 2012, 154, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Cadavez, V.; Gonzales-Barron, U.; Mukhopadhyay, S. Modelling the effect of pH, Sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157: H7 in ground beef. Food Res. Int. 2015, 69, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Juneja, V.K.; Melendres, M.V.; Huang, L.; Subbiah, J.; Thippareddi, H. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 °C. Int. J. Food Microbiol. 2009, 131, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Labbe, R.G.; Huang, T.H. Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground Beef. J. Food Prot. 1995, 58, 1303–1306. [Google Scholar] [CrossRef]
- Reid, R.; Fanning, S.; Whyte, P.; Kerry, J.; Bolton, D. Comparison of hot versus cold boning of beef carcasses on bacterial growth and the risk of blown pack spoilage. Meat Sci. 2017, 125, 46–52. [Google Scholar] [CrossRef]
- Riva, M.; Sinelli, N.; Franzetti, L.; Torri, L.; Limbo, S. Predictive modeling of the freshness of minced beef meat stored In map at different temperature. Ital. J. Food Sci. 2009, 21, 14–18. [Google Scholar]
- Saraiva, C.; Fontes, M.C.; Patarata, L.; Martins, C.; Cadavez, V.; Gonzales-Barron, U. Modelling the kinetics of Listeria monocytogenes in refrigerated fresh beef under different packaging atmospheres. LWT Food Sci. Technol. 2016, 66, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Fontes, M.D.C.; Patarata, L.; Martins, C.; Cadavez, V.; Gonzales-Barron, U. Modelling the fate of Listeria monocytogenes in beef meat stored at refrigeration temperatures under different packaging conditions. Procedia Food Sci. 2016, 7, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Stacey, K.F.; Parsons, D.J.; Christiansen, K.H.; Burton, C.H. Assessing the effect of interventions on the risk of cattle and sheep carrying Escherichia coli O157:H7 to the abattoir using a stochastic model. Prev. Vet. Med. 2007, 79, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimont, A.; Vernozy-Rozand, C.; Montet, M.P.; Lazizzera, C.; Bavai, C.; Delignette-Muller, M.-L. Modeling and predicting the simultaneous growth of Escherichia coli O157:H7 and ground beef background microflora for various enrichment protocols. Appl. Environ. Microbiol. 2006, 72, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.; Geornaras, I.; Kendall, P.A.; Sofos, J.N. Modeling the effect of marination and temperature on salmonella inactivation during drying of beef jerky. J. Food Sci. 2009, 74, M165–M171. [Google Scholar] [CrossRef] [PubMed]
- Zamora, M.C.; Zaritzky, N.E. Modeling of Microbial Growth in Refrigerated Packaged Beef. J. Food Sci. 1985, 50, 1003–1006. [Google Scholar] [CrossRef]
- Atsbha, T.W.; Weldeabezgi, L.T.; Seyoum, K.A.; Tafere, G.; Kassegn, H.H. Salmonella and risk factors for the contamination of cattle carcass from abattoir of Mekelle City, Ethiopia. Cogent Food Agric. 2018. [Google Scholar] [CrossRef]
- Dubey, J.P.; Hill, D.E.; Jones, J.L.; Hightower, A.W.; Kirkland, E.; Roberts, J.M.; Marcet, P.L.; Lehmann, T.; Vianna, M.C.B.; Miska, K.; et al. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retail meat stores in the United States: Risk assessment to consumers. J. Parasitol. 2005, 91, 1082–1093. [Google Scholar] [CrossRef]
- Frössling, J.; Ohlson, A.; Björkman, C.; Håkansson, N.; Nöremark, M. Application of network analysis parameters in risk-based surveillance-Examples based on cattle trade data and bovine infections in Sweden. Prev. Vet. Med. 2012, 105, 202–208. [Google Scholar] [CrossRef]
- Hoke, K.; Houška, M.; Kýhos, K.; Landfeld, A.; Pipek, P. Modelling of beef surface temperatures during steam decontamination. J. Food Eng. 2003, 58, 95–102. [Google Scholar] [CrossRef]
- Kuffi, K.D.; Defraeye, T.; Nicolai, B.M.; De Smet, S.; Geeraerd, A.; Verboven, P. CFD modeling of industrial cooling of large beef carcasses. Int. J. Refrig. 2016, 69, 324–339. [Google Scholar] [CrossRef]
- Mallikarjunan, P.; Mittal, S.G. Heat and mass transfer during beef carcass chilling-Modelling and simulation. J. Food Eng. 1994, 23, 277–292. [Google Scholar] [CrossRef]
- Mittal, G.; Mallikarjunan, P. Heat and mass transfer modelling during beef carcass chilling for quality control. In Developments in Food Engineering; Yano, T., Matsuno, R., Nakamura, K., Eds.; Springer: Boston, MA, USA, 1994; pp. 331–333. [Google Scholar]
- Trujillo, F.J.; Pham, Q.T. CFD modeling of simultaneous heat and mass transfer in beef chilling. In Computational Fluid Dynamics in Food Processing; CRC Press: Boca Raton, FL, USA, 2007; pp. 195–222. [Google Scholar]
- Zhang, Z.; Sun, D. Modelling of three-dimensional heat and mass transfer during vacuum cooling of cooked diced beefs. In Proceedings of the 3rd International Symposium on Applications of Modelling as an Innovative Technology in the Agri-Food Chain, Leuven, Belgium, 29 May–2 June 2005; Hertog, M.L.A., Nicolai, B.M., Tijskens, L.M.M., Eds.; ISHS: Leuven, Belgium, 2005; Volume 674, pp. 199–204. [Google Scholar]
- Niyonzima, E.; Ongol, M.P.; Kimonyo, A.; Sindic, M. Risk Factors and Control Measures for Bacterial Contamination in the Bovine Meat Chain: A Review on Salmonella and Pathogenic E. coli. J. Food Res. 2015, 4, 98–121. [Google Scholar] [CrossRef]
- Nørrung, B.; Buncic, S. Microbial safety of meat in the European Union. Meat Sci. 2008, 78, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Cummins, E.J. Quantifying microbial propagation. In Modeling in Food Microbiology. From Predictive Microbiology to Exposure Assessment; Membré, J.-M., Valdramidis, V., Eds.; ISTE Press Ltd. & Elsevier Ltd.: London, UK, 2016; pp. 17–31. ISBN 978-1-78548-155-0. [Google Scholar]
- Duffy, G.; Cummins, E.; Nally, P.; O’Brien, S.; Butler, F. A review of quantitative microbial risk assessment in the management of Escherichia coli O157: H7 on beef. Meat Sci. 2006, 74, 76–88. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Enterohaemorrhagic Escherichia Coli in Raw Beef and Beef Products: Approaches for the Provision of Scientific Advice: Meeting Report; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- O’Brien, S.B.; Duffy, G.; Carney, E.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S. Prevalence and numbers of Escherichia coli O157 on bovine hides at a beef slaughter plant. J. Food Prot. 2005, 68, 660–665. [Google Scholar] [PubMed]
- Butler, F.; Duffy, G.; Engeljohn, D.; Lammerding, A.M.; Tompkin, R.B. Background Paper for the JOINT FAO WHO Expert Consultation on Development of Practical Risk Management Strategies Based on Microbiological Risk Assessment Outputs; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2006; p. 41. [Google Scholar]
- European Food Safety Authority (EFSA). A quantitative microbiological risk assessment on Salmonella in meat: Source attribution for human salmonellosis from meat-Scientific Opinion of the Panel on Biological Hazards: A quantitative microbiological risk assessment on Salmonella in meat: Source attribution for human salmonellosis from meat-Scientific Opinion of Panel on Biological Hazards. EFSA J. 2008, 6, 625. [Google Scholar]
- European Parliament; Council of European Union. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, 47, 139. [Google Scholar]
- Haas, C.N. Microbial Dose Response Modeling: Past, Present, and Future. Environ. Sci. Technol. 2015, 49, 1245–1259. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Kasuga, F.; Fazil, A.; Ogden, I.D.; Rotariu, O.; Strachan, N.J.C. Dose–response modeling of Salmonella using outbreak data. Int. J. Food Microbiol. 2010, 144, 243–249. [Google Scholar] [CrossRef]
- Powell, K.L.; Tellam, J.H.; Barett, M.H.; Pedley, S.; Stagg, K.A.; Greswell, R.B.; Rivett, M.O. Report No. NC/99/40. Optimisation of a New Method for Detection of Viruses in Groundwater. Environment Agency, National Groundwater and Contaminated Land Centre. West. Midlands, United Kingdom; Environment Agency: Bristol, UK, 2000. [Google Scholar]
- Lelieveld, H.L.M.; John, H.; Domagoj, G. Handbook of Hygiene Control in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100155-4. [Google Scholar]
- Tenenhaus-Aziza, F.; Ellouze, M. Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair. Food Microbiol. 2015, 45, 290–299. [Google Scholar] [CrossRef]
- Bassett, J.; Nauta, M.; Lindqvist, R.; Zwietering, M.H. Tools for Microbiological Risk Assessment; ILSI Europe risk analysis in food microbiology task force; ILSI Europe: Brussels, Belgium, 2012; ISBN 978-90-78637-34-9. [Google Scholar]
- Walls, I.; Scott, V.N. Validation of Predictive Mathematical Models Describing the Growth of Escherichia coli O157:H7 in Raw Ground Beef. J. Food Prot. 1996, 59, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Marks, H.M.; Coleman, M.E.; Lin, C.-T.J.; Roberts, T. Topics in Microbial Risk Assessment: Dynamic Flow Tree Process. Risk Anal. 1998, 18, 309–328. [Google Scholar] [CrossRef] [PubMed]
- USDA Pathogen Modeling Program (PMP). Available online: https://pmp.errc.ars.usda.gov/default.aspx (accessed on 1 July 2019).
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Tamplin, M.L.; Paoli, G.; Marmer, B.S.; Phillips, J. Models of the behavior of Escherichia coli O157: H7 in raw sterile ground beef stored at 5 to 46 C. Int. J. Food Microbiol. 2005, 100, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Snyder, O.P., Jr.; Marmer, B.S. Thermal destruction of Escherichia coli O157: H7 in beef and chicken: Determination of D-and z-values. Int. J. Food Microbiol. 1997, 35, 231–237. [Google Scholar] [CrossRef]
- Gkogka, E.; Reij, M.W.; Gorris, L.G.M.; Zwietering, M.H. Risk assessment strategies as a tool in the application of the Appropriate Level of Protection (ALOP) and Food Safety Objective (FSO) by risk managers. Int. J. Food Microbiol. 2013, 167, 8–28. [Google Scholar] [CrossRef]
- Maijala, R.; Ranta, J.; Seuna, E.; Pelkonen, S.; Johansson, T. A quantitative risk assessment of the public health impact of the Finnish Salmonella control program for broilers. Int. J. Food Microbiol. 2005, 102, 21–35. [Google Scholar] [CrossRef]
- Evers, E.G.; Chardon, J.E. A swift Quantitative Microbiological Risk Assessment (sQMRA) tool. Food Control 2010, 21, 319–330. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Van Duynhoven, Y.; Nauta, M.J.; Bouwknegt, M.; Heuvelink, A.E.; De Wit, G.A.; Nieuwenhuizen, M.G.M. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichia coli O157. Epidemiol. Infect. 2004, 132, 467–484. [Google Scholar] [CrossRef]
- Mokhtari, A.; Frey, H.C. Recommended Practice Regarding Selection of Sensitivity Analysis Methods Applied to Microbial Food Safety Process Risk Models. Hum. Ecol. Risk Assess. Int. J. 2005, 11, 591–605. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; van Gerwen, S.J.C. Sensitivity analysis in quantitative microbial risk assessment. Int. J. Food Microbiol. 2000, 58, 213–221. [Google Scholar] [CrossRef]
- Zwietering, M.H. Risk assessment and risk management for safe foods: Assessment needs inclusion of variability and uncertainty, management needs discrete decisions. Int. J. Food Microbiol. 2015, 213, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Van der Fels-Klerx, H.J.; Van Asselt, E.D.; Raley, M.; Poulsen, M.; Korsgaard, H.; Bredsdorff, L.; Nauta, M.; D’agostino, M.; Coles, D.; Marvin, H.J.P.; et al. Critical review of methods for risk ranking of food-related hazards, based on risks for human health. Crit. Rev. Food Sci. Nutr. 2018, 58, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Nauta, M.J. A Modular Process Risk Model Structure for Quantitative Microbiological Risk Assessment and Its Application in an Exposure Assessment of Bacillus Cereus in a REPFED; 2001. Available online: http://hdl.handle.net/10029/9385 (accessed on 17 January 2020).
- FAO; WHO. Principles and Guidelines for Incorporating Microbiological Risk Assessment in the Development of Food Safety Standards, Guidelines and Related Texts: Report of a Joint FAO/WHO Consultation, Kiel, Germany, 18–22 March 2002; FAO-WHO Expert Consultation on Principles and Guidelines for Incorporating Microbiological Risk Assessment in the Development of Food Safety Standards, Guidelines and Related Texts; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2002; ISBN 978-92-5-104845-0. [Google Scholar]
- Lammerding, A. Using Microbiological Risk Assessment (MRA) in Food Safety, Summary Report of a Workshop in Prague, Czech Republic: ILSI Europe Report Series; ILSI Europe: Bruxelles, Belgium, 2007. [Google Scholar]
- Cummins, E.J.; Lyng, J.G. Emerging technologies in meat processing. In Emerging Technologies in Meat Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–5. ISBN 978-1-118-35067-6. [Google Scholar]
- Barlow, S.M.; Boobis, A.R.; Bridges, J.; Cockburn, A.; Dekant, W.; Hepburn, P.; Houben, G.F.; König, J.; Nauta, M.J.; Schuermans, J.; et al. The role of hazard- and risk-based approaches in ensuring food safety. Trends Food Sci. Technol. 2015, 46, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Koutsoumanis, K.P.; Lianou, A.; Gougouli, M. Latest developments in foodborne pathogens modeling. Curr. Opin. Food Sci. 2016, 8, 89–98. [Google Scholar] [CrossRef]
Pathogen | Productt | Country | Population | Objective | Ref. |
---|---|---|---|---|---|
Escherichia coli EHEC (n = 21) | Beef meat | The Netherlands | All | Exposure assessment, health burden, interventions | [16] |
UK | All | Exposure assessment for beef, sheep and pig meats | [17] | ||
Beef preparations | The Netherlands | All | Exposure assessment from meat of different animals | [19] | |
Burger | Canada/North America | All | Process assessment | [20] | |
France | <16 years | Evaluation of illness risk following outbreak | [21,22] | ||
All | Impact of cooking preferences on illness risk | [23] | |||
North America | All | Food-chain assessment; health burden assessment | [24] | ||
All | Evaluation of illness risk from Australian beef | [25] | |||
Scotland | All | Risk assessment of transmission pathways to humans | [26] | ||
Carcasses | Australia | All | Assessment of interventions | [27] | |
North America | All | Assessment of interventions for fallen carcasses | [28] | ||
Scotland | All | Exposure assessment of carcass processing | [18] | ||
Ground beef | France | <16 years | Process assessment | [29] | |
Ireland | All | Food chain assessment | [30,31] | ||
All | Illness risk from consumption Risk management | [32] | |||
North America | <5 years, >5 years | Illness risk from consumption | [33] | ||
All | Illness risk from consumption | [34] | |||
Argentina | <5 years, adult | Illness risk from consumption | [35] | ||
Canada | All | Intervention ranking Assessment of diverse meat types | [36] | ||
Salmonella spp. (n = 7) | Beef meat | Brazil | All | Meta-analysis-based exposure assessment | [37] |
Zambia | All | Assessment of increasing beef consumption on public health | [38] | ||
Beef products | Finland | All | Assessment of imported beef and additional guarantees | [39] | |
All | Assessment of impact of performance objectives and microbiological criteria | [40] | |||
Burgers | France | All | Outbreak investigation | [41] | |
Ground beef | France | All | Evaluation of illness risk | [42] | |
North America | All | Contribution of deep tissue lymph nodes to meat contamination and interventions | [43] | ||
Campylobacter spp. (n = 1) | Raw beef | South Korea | All | Risk assessment of raw beef offal | [44] |
Cryptosporidium parvum (n = 1) | Beef | North America | - | Estimation of beef-attributed daily shedding | [45] |
Listeria monocytogenes (n = 1) | Beef meat | Chile | Susceptible | Estimation of illness probability from beef and chicken consumption | [46] |
Bovine Spongiform Encephalopathy (n = 1) | Cattle | UK | All | Assessment of the impact of risk-reduction measures | [47] |
Taenia saginata (n = 1) | Beef | Australia | All | Adaptation of model to national context, impact of interventions | [48] |
Pathogen | Ref | Inputs | Outputs | Model | Validation | Predictive Microbiology | Dose-Response | Sensitivity Analysis |
---|---|---|---|---|---|---|---|---|
Escherichia coli (EHEC) | [16] | Pv | Pv; C Pill; In; DALY | S | Literature | Growth Inactivation | Beta-Poisson | Dependency |
[17] | Pv | Pv; C Pill | S | Literature | Growth Inactivation | Beta-binomial | - | |
[18] | Pv | Pv | S | - | - | - | - | |
[19] | Pv; C | C Ex | D | - | Growth Inactivation | - | Dependency | |
[20] | Pv; C | Ex; Dose Pill; Mo | S | - | Growth Inactivation | Beta-binomial; Beta-Poisson | Rank order correlation | |
[21,22] | C | Pv; C Pill; In | S | Literature | Inactivation | [0–5] and [5–10] Exponential; exponential-Poisson [10–16] Beta-Poisson | - | |
[23] | Pv; C | In | S | - | Inactivation | Beta-Poisson | - | |
[24] | Pv | Pv; C Pill | S | - | Growth Inactivation | Beta-Poisson | Correlation | |
[25] | Pv | Pv Pill; In | S | - | - | Beta-binomial | Dependency | |
[26] | Pv; C | Ex; Dose Pill; In | S | - | - | Beta-Binomial | - | |
[27] | Pv | Pv | S | - | - | - | Saltelli’s method | |
[28] | Probability of carcass falling; C; In | In | S | - | Inactivation | - | Dependency | |
[29] | Pv; C | pill | S | - | Inactivation | Exponential | ||
[30,31] | Pv | Pv; C | S | Sampling | Growth | Beta-Poisson | Rank order correlation | |
[32] | Pv; C | Pv; C Pill | S | Samplings | Growth Inactivation | Envelope model | Rank order correlation | |
[33] | Pv | Pv Pill | S | Growth | Beta-Poisson | Correlation Dependency | ||
[34] | Pv | Pv; C Pill; In; Mo | S | Literature | Growth Inactivation | Beta-Poisson | Rank order correlation Dependency | |
[35] | Pv; C | Pv; C Pill | S | Growth Inactivation | Beta-Poisson | Regression | ||
[36] | C | Dose Pill | S | Sampling | Growth Inactivation | Beta-binomial | Rank order correlation | |
Salmonella spp. | [37] | Pv | Pv | S | Survey | - | - | Regression |
[38] | Pv; C | Ex; C In | D | Literature | - | - | - | |
[39] | Pv | Pv | S | Literature | - | - | - | |
[40] | Pv | Pv Pill; In | S | - | Inactivation | Beta-Poisson | - | |
[41] | C | Dose In | S | Literature | Inactivation | Beta-Poisson | - | |
[42] | Pv; C | Ex; Dose Pill; Pout | S | - | Growth Inactivation | Beta-Poisson | - | |
[43] | Pv; C | Pv; C | S | - | - | - | Dependency | |
Campylobacter spp. | [44] | Pv; C | Pv/; C Pill | D | Growth | Beta-Poisson | Correlation analysis | |
Cryptosporidium parvum | [45] | Pv; In | Total shedding | S | ||||
L. monocytogenes | [46] | C | In | D; S | Growth Inactivation | Exponential, Weibull-Gamma | Dependency | |
Bovine Spongiform Encephalopathy | [47] | Pv; In Infectivity | Ex Pill | S | - | - | - | Dependency |
Taenia saginata | [48] | Pv National production | Dose Pill | S | Inactivation | Beta distribution | Rank-order correlation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesson, V.; Federighi, M.; Cummins, E.; de Oliveira Mota, J.; Guillou, S.; Boué, G. A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models. Int. J. Environ. Res. Public Health 2020, 17, 688. https://doi.org/10.3390/ijerph17030688
Tesson V, Federighi M, Cummins E, de Oliveira Mota J, Guillou S, Boué G. A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models. International Journal of Environmental Research and Public Health. 2020; 17(3):688. https://doi.org/10.3390/ijerph17030688
Chicago/Turabian StyleTesson, Vincent, Michel Federighi, Enda Cummins, Juliana de Oliveira Mota, Sandrine Guillou, and Géraldine Boué. 2020. "A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models" International Journal of Environmental Research and Public Health 17, no. 3: 688. https://doi.org/10.3390/ijerph17030688
APA StyleTesson, V., Federighi, M., Cummins, E., de Oliveira Mota, J., Guillou, S., & Boué, G. (2020). A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models. International Journal of Environmental Research and Public Health, 17(3), 688. https://doi.org/10.3390/ijerph17030688