Inflammatory Biomarkers, Microbiome, Depression, and Executive Dysfunction in Alcohol Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Alcohol Consumption
2.3. Assessment of Executive Functions
2.4. Assessment of Social Anxiety
2.5. Depression Symptomatology
2.6. Collection of Biological Samples
2.7. Cytokines, Chemokines, Leptin, Insulin, and Cortisol Assays
2.8. Microbiome Analysis by Next Generation Sequencing
2.9. Vitamin D Assay
2.10. Dietary Assessment
2.11. Data Analyses
3. Results
3.1. General Characteristics of the Study Participants
3.2. Depression and Social Anxiety Levels of the Study Participants
3.3. Cognitive and Executive Function Abilities
3.4. Plasma and Salivary Levels of Cytokines
3.5. Plasma and Salivary Levels of Insulin, Leptin, Cortisol, and Vitamin D
3.6. Salivary Microbiome Assessment
3.7. Diet
3.8. Cytokines and Microbiome Correlations with Executive Functions
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lakew, R. Impact of Alcohol on Households and Families in Trinidad and Tobago. Master’s Thesis, Yale University, New Haven, CT, USA, 2019. [Google Scholar]
- Olayinka, O.; Ozoekwe, U.; Halari, C.D.; Halari, M.; Alao, O.J.; Ige, T.O.; Medavarapu, S. The Prevalence of Alcohol Consumption and Common Influencing Factors to Start Alcohol Consumption in Early Age: Health Fair Study in Dominica. Arch. Med. 2016, 8, 6. [Google Scholar] [CrossRef]
- McIlwaine, C.M. Drugs, alcohol and community tolerance: An urban ethnography from Colombia and Guatemala. Environ. Urban. 2004, 16, 49–62. [Google Scholar] [CrossRef]
- ASSMCA. Trastornos de Substancias y Uso de Servicios en Puerto Rico: Encuesta de Hogares-2008; Administración de Servicios de Salud Mental y Contra la Adicción: Bayamon, Puerto Rico, 2009.
- Puerto Rico Traffic Safety Commission. Puerto Rico Annual Report FY 2017; Government of Puerto Rico: San Juan, Puerto Rico, 2017.
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K.; et al. Cognition assessment using the NIH Toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschloo, L.; Vogelzangs, N.; van den Brink, W.; Smit, J.H.; Veltman, D.J.; Beekman, A.T.; Penninx, B.W. Alcohol use disorders and the course of depressive and anxiety disorders. Br. J. Psychiatry 2012, 200, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschloo, L.; van den Brink, W.; Penninx, B.W.; Wall, M.M.; Hasin, D.S. Alcohol-use disorder severity predicts first-incidence of depressive disorders. Psychol. Med. 2012, 42, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, B.F.; Harford, T.C. Comorbidity between DSM-IV alcohol use disorders and major depression: Results of a national survey. Drug Alcohol Depend. 1995, 39, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Nubukpo, P.; Girard, M.; Sengelen, J.M.; Bonnefond, S.; Varnoux, A.; Marin, B.; Malauzat, D. A prospective hospital study of alcohol use disorders, comorbid psychiatric conditions and withdrawal prognosis. Ann. Gen. Psychiatry 2016, 15, 22. [Google Scholar] [CrossRef] [Green Version]
- Rincon-Hoyos, H.G.; Castillo, A.; Prada, S.I. Alcohol use disorders and psychiatric diseases in Colombia. Colomb. Med. 2016, 47, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Bolton, J.M.; Belik, S.L.; Enns, M.W.; Cox, B.J.; Sareen, J. Exploring the correlates of suicide attempts among individuals with major depressive disorder: Findings from the national epidemiologic survey on alcohol and related conditions. J. Clin. Psychiatry 2008, 69, 1139–1149. [Google Scholar] [CrossRef]
- Irwin, K.C.; Konnert, C.; Wong, M.; O’Neill, T.A. PTSD symptoms and pain in Canadian military veterans: The mediating roles of anxiety, depression, and alcohol use. J. Trauma. Stress 2014, 27, 175–181. [Google Scholar] [CrossRef]
- Neish, A.S. Mucosal immunity and the microbiome. Ann. Am. Thorac. Soc. 2014, 11, S28–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zaane, J.; van den Brink, W.; Draisma, S.; Smit, J.H.; Nolen, W.A. The effect of moderate and excessive alcohol use on the course and outcome of patients with bipolar disorders: A prospective cohort study. J. Clin. Psychiatry 2010, 71, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.; Bäckhed, F.; Verbeke, K.; et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comito, D.; Cascio, A.; Romano, C. Microbiota biodiversity in inflammatory bowel disease. Ital. J. Pediatr. 2014, 40, 32. [Google Scholar] [CrossRef] [Green Version]
- de Jong, P.R.; González-Navajas, J.M.; Jansen, N.J. The digestive tract as the origin of systemic inflammation. Crit. Care 2016, 20, 279. [Google Scholar] [CrossRef] [Green Version]
- Joyce, S.A.; Gahan, C.G. The gut microbiota and the metabolic health of the host. Curr. Opin. Gastroenterol. 2014, 30, 120–127. [Google Scholar] [CrossRef]
- Kim, Y.G.; Udayanga, K.G.; Totsuka, N.; Weinberg, J.B.; Núñez, G.; Shibuya, A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE₂. Cell Host Microbe. 2014, 15, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Kosiewicz, M.M.; Dryden, G.W.; Chhabra, A.; Alard, P. Relationship between gut microbiota and development of T cell associated disease. FEBS Lett. 2014, 588, 4195–4206. [Google Scholar] [CrossRef]
- Remely, M.; Aumueller, E.; Jahn, D.; Hippe, B.; Brath, H.; Haslberger, A.G. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef. Microbes. 2014, 5, 33–43. [Google Scholar] [CrossRef]
- Catena-Dell’Osso, M.; Rotella, F.; Dell’Osso, A.; Fagiolini, A.; Marazziti, D. Inflammation, serotonin and major depression. Curr. Drug Targets 2013, 14, 571–577. [Google Scholar] [CrossRef]
- Couch, Y.; Anthony, D.C.; Dolgov, O.; Revischin, A.; Festoff, B.; Santos, A.I.; Steinbusch, H.W.; Strekalova, T. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav. Immun. 2013, 29, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Malynn, S.; Campos-Torres, A.; Moynagh, P.; Haase, J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem. Res. 2013, 38, 694–704. [Google Scholar] [CrossRef]
- Oxenkrug, G.F. Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: The serotonin hypothesis revisited 40 years later. Isr. J. Psychiatry Relat. Sci. 2010, 47, 56–63. [Google Scholar] [PubMed] [Green Version]
- Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol. Psychiatry 2016, 21, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, H.; Rady, P.L.; Juelich, T.; Smith, E.M.; Tyring, S.K.; Hughes, T.K. Cytokine regulation of tryptophan metabolism in the hypothalamic-pituitary-adrenal (HPA) axis: Implications for protective and toxic consequences in neuroendocrine regulation. Cell. Mol. Neurobiol. 2005, 25, 673–680. [Google Scholar] [CrossRef] [PubMed]
- van Heesch, F.; Prins, J.; Korte-Bouws, G.A.; Westphal, K.G.; Lemstra, S.; Olivier, B.; Kraneveld, A.D.; Korte, S.M. Systemic tumor necrosis factor-alpha decreases brain stimulation reward and increases metabolites of serotonin and dopamine in the nucleus accumbens of mice. Behav. Brain Res. 2013, 253, 191–195. [Google Scholar] [CrossRef]
- Zhu, C.B.; Blakely, R.D.; Hewlett, W.A. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006, 31, 2121–2131. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ho, R.C.; Mak, A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. J. Affect. Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef]
- Jokelainen, K.; Reinke, L.A.; Nanji, A.A. Nf-kappab activation is associated with free radical generation and endotoxemia and precedes pathological liver injury in experimental alcoholic liver disease. Cytokine 2001, 16, 36–39. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Giordano, M.; Nunnari, G.; Bertino, G.; Malaguarnera, M. Gut microbiota in alcoholic liver disease: Pathogenetic role and therapeutic perspectives. World J. Gastroenterol. 2014, 20, 16639–16648. [Google Scholar] [CrossRef]
- Nanji, A.A.; Su, G.L.; Laposata, M.; French, S.W. Pathogenesis of alcoholic liver disease-recent advances. Alcohol. Clin. Exp. Res. 2002, 26, 731–736. [Google Scholar] [PubMed]
- Rao, R.K.; Seth, A.; Sheth, P. Recent Advances in Alcoholic Liver Disease, I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G881–G884. [Google Scholar] [CrossRef] [PubMed]
- Amaral, C.; da Silva-Boghossian, C.M.; Leão, A.T.; Colombo, A.P. Evaluation of the subgingival microbiota of alcoholic and non-alcoholic individuals. J. Dent. 2011, 39, 729–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golin, V.; Mimica, I.M.; Mimica, L.M. Oropharynx microbiota among alcoholics and non-alcoholics. Sao Paulo Med. J. 1998, 116, 1727–1733. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Freedman, N.D.; Alekseyenko, A.V.; Wu, J.; Yang, L.; Pei, Z.; et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 2018, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Bull-Otterson, L.; Feng, W.; Kirpich, I.; Wang, Y.; Qin, X.; Liu, Y.; Gobejishvili, L.; Joshi-Barve, S.; Ayvaz, T.; Petrosino, J.; et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS ONE 2013, 8, e53028. [Google Scholar] [CrossRef]
- Jiménez-Girón, A.; Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Muñoz-González, I.; Sánchez-Patán, F.; Monagas, M.; Martín-Álvarez, P.J.; Murri, M.; Tinahones, F.J.; Andrés-Lacueva, C.; et al. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. J. Agric. Food Chem. 2013, 61, 3909–3915. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Gillevet, P.M.; Rangwala, H.; Sikaroodi, M.; Naqvi, A.; Engen, P.A.; Kwasny, M.; Lau, C.K.; Keshavarzian, A. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G966–G978. [Google Scholar] [CrossRef]
- Mutlu, E.; Keshavarzian, A.; Engen, P.; Forsyth, C.B.; Sikaroodi, M.; Gillevet, P. Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol. Clin. Exp. Res. 2009, 33, 1836–1846. [Google Scholar] [CrossRef] [Green Version]
- Purohit, V.; Bode, J.C.; Bode, C.; Brenner, D.A.; Choudhry, M.A.; Hamilton, F.; Kang, Y.J.; Keshavarzian, A.; Rao, R.; Sartor, R.B.; et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: Summary of a symposium. Alcohol 2008, 42, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Campanella, S.; Petit, G.; Maurage, P.; Kornreich, C.; Verbanck, P.; Noël, X. Chronic alcoholism: Insights from neurophysiology. Neurophysiol. Clin. 2009, 39, 191–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, K.L.; Cummins, K.; Tapert, S.F.; Brown, S.A. Changes in neuropsychological functioning over 10 years following adolescent substance abuse treatment. Psychol. Addict. Behav. 2011, 25, 127–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houston, R.J.; Derrick, J.L.; Leonard, K.E.; Testa, M.; Quigley, B.M.; Kubiak, A. Effects of heavy drinking on executive cognitive functioning in a community sample. Addict. Behav. 2014, 39, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Sassoon, S.A.; Rosenbloom, M.J.; Fama, R.; Sullivan, E.V.; Pfefferbaum, A. Selective neurocognitive deficits and poor life functioning are associated with significant depressive symptoms in alcoholism-HIV infection comorbidity. Psychiatry Res. 2012, 199, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Babor, T.F.; Higgins-Biddle, J.C.; Saunders, J.B.; Monteiro, M.G. AUDIT: The alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Slotkin, J.; Carlozzi, N.E.; Bauer, P.J.; Wallner-Allen, K.; Fox, N.; et al. The cognition battery of the NIH toolbox for assessment of neurological and behavioral function: Validation in an adult sample. J. Int. Neuropsychol. Soc. 2014, 20, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Fresco, D.M.; Coles, M.E.; Heimberg, R.G.; Liebowitz, M.R.; Hami, S.; Stein, M.B.; Goetz, D. The Liebowitz Social Anxiety Scale: A comparison of the psychometric properties of self-report and clinician-administered formats. Psychol. Med. 2001, 31, 1025–1035. [Google Scholar] [CrossRef]
- KHN Solutions LLC. BACtrack Pro S80 Operating Instructions & Manuals. Available online: https://www.bactrack.com/pages/operating-instructions-manuals (accessed on 16 June 2019).
- Gershon, R.; Wagster, M.; Hendrie, H.; Fox, N.; Cook, K.; Nowinski, C. NIH toolbox for assessment of neurological and behavioral function. Neurology 2013, 80, S2–S6. [Google Scholar] [CrossRef] [Green Version]
- Henson, B.; Wong, D. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol. Biol. 2010, 666, 21–30. [Google Scholar] [CrossRef]
- duPont, N.; Wang, K.; Wadhwa, P.; Culhane, J.; Nelson, E. Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: Determinations of a panel of nine cytokines in clinical sample culture supernatants. J. Reprod. Immunol. 2005, 66, 175–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar]
- Schakel, S.F. Maintaining a Nutrient Database in a Changing Marketplace: Keeping Pace with Changing Food Products—A Research Perspective. J. Food Compos. Anal. 2001, 14, 315–322. [Google Scholar] [CrossRef]
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45. [Google Scholar] [CrossRef] [Green Version]
- Talvan, E.T.; Mohor, C.; Chisnoiu, D.; Cristea, V.; Campian, R.S. Expression of Interlukin (IL)-1 β, IL-8, IL-10 and IL-13 in Chronic Adult Periodontitis Progression. Arch. Med. 2017, 9. [Google Scholar] [CrossRef]
- Grover, H.S.; Kapoor, S.; Singh, A. Effect of topical simvastatin (1.2 mg) on gingival crevicular fluid interleukin-6, interleukin-8 and interleukin-10 levels in chronic periodontitis-A clinicobiochemical study. J. Oral. Biol. Craniofac. Res. 2016, 6, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.J.; Kim, W.; Yoon, S.J.; Choi, B.M.; Kim, J.S.; Go, H.J.; Kim, Y.K.; Jeong, J. Effects of alcohol hangover on cytokine production in healthy subjects. Alcohol 2003, 31, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Tomas, I.; Arias-Bujanda, N.; Alonso-Sampedro, M.; Casares-de-Cal, M.A.; Sanchez-Sellero, C.; Suarez-Quintanilla, D.; Balsa-Castro, C. Cytokine-based Predictive Models to Estimate the Probability of Chronic Periodontitis: Development of Diagnostic Nomograms. Sci. Rep. 2017, 7, 11580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccelli, A.E.; Agarwal, S.; Piesco, N.P.; Hoffman, R.D.; Suzuki, J.B. Role of cytokines in periodontal diseases. J. Calif. Dent. Assoc. 1995, 23, 48–51. [Google Scholar]
- Chen, D.; Zhang, T.L.; Wang, X. Association between Polymorphisms in Interleukins 4 and 13 Genes and Chronic Periodontitis in a Han Chinese Population. Biomed. Res. Int. 2016, 2016, 8389020. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.O.; Jensen, J.S.; Ritzenthaler, J.D.; Roman, J.; Pelaez, A.; Guidot, D.M. Alcohol primes the airway for increased interleukin-13 signaling. Alcohol. Clin. Exp. Res. 2009, 33, 505–513. [Google Scholar] [CrossRef]
- Xiong, Y.; Sun, W.; Li, W.L.; Xiong, L.X.; Shi, X.Y.; Zhao, L.; Wang, Z.G. Effects of IL-13 and alcohol on collagen expression of human lung fibrolasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011, 27, 395–398. [Google Scholar]
- Aziz, S.; Ahmed, S.S.; Ali, A.; Khan, F.A.; Zulfiqar, G.; Iqbal, J.; Khan, A.A.; Shoaib, M. Salivary Immunosuppressive Cytokines IL-10 and IL-13 Are Significantly Elevated in Oral Squamous Cell Carcinoma Patients. Cancer Investig. 2015, 33, 318–328. [Google Scholar] [CrossRef]
- Polz-Dacewicz, M.; Strycharz-Dudziak, M.; Dworzanski, J.; Stec, A.; Kocot, J. Salivary and serum IL-10, TNF-alpha, TGF-beta, VEGF levels in oropharyngeal squamous cell carcinoma and correlation with HPV and EBV infections. Infect. Agent Cancer 2016, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.M.; Doody, D.R.; Fitzgibbons, E.D.; Ricks, S.; Porter, P.L.; Chen, C. Oral squamous cell cancer risk in relation to alcohol consumption and alcohol dehydrogenase-3 genotypes. Cancer Epidemiol. Biomark. Prev. 2001, 10, 1137–1144. [Google Scholar]
- Marshall, S.A.; McKnight, K.H.; Blose, A.K.; Lysle, D.T.; Thiele, T.E. Modulation of Binge-like Ethanol Consumption by IL-10 Signaling in the Basolateral Amygdala. J. Neuroimmune Pharmacol. 2017, 12, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.S.; Mathews, S.T. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J. Diabetes 2014, 5, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Halifeoglu, I.; Ozercan, I.H.; Erman, F.; Kilic, N.; Ilhan, N.; Ozkan, Y.; Akpolat, N.; Sert, L.; Caylak, E. A comparison of leptin and ghrelin levels in plasma and saliva of young healthy subjects. Peptides 2005, 26, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Day, A.M.; Kahler, C.W.; Ahern, D.C.; Clark, U.S. Executive Functioning in Alcohol Use Studies: A Brief Review of Findings and Challenges in Assessment. Curr. Drug Abuse Rev. 2015, 8, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Mattick, R.P.; Jamadar, S.D.; Iredale, J.M. Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug Alcohol Depend. 2014, 145, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Smith-Spark, J.H.; Moss, A.C.; Dyer, K.R. Do Baseline Executive Functions Mediate Prospective Memory Performance under a Moderate Dose of Alcohol? Front. Psychol. 2016, 7, 1325. [Google Scholar] [CrossRef] [Green Version]
- Peeters, M.; Janssen, T.; Monshouwer, K.; Boendermaker, W.; Pronk, T.; Wiers, R.; Vollebergh, W. Weaknesses in executive functioning predict the initiating of adolescents’ alcohol use. Dev. Cogn. Neurosci. 2015, 16, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Boelema, S.R.; Harakeh, Z.; van Zandvoort, M.J.; Reijneveld, S.A.; Verhulst, F.C.; Ormel, J.; Vollebergh, W.A. Executive functioning before and after onset of alcohol use disorder in adolescence. A TRAILS study. J. Psychiatr. Res. 2016, 78, 78–85. [Google Scholar] [CrossRef]
- Moss, H.B.; Goldstein, R.B.; Chen, C.M.; Yi, H.Y. Patterns of use of other drugs among those with alcohol dependence: Associations with drinking behavior and psychopathology. Addict. Behav. 2015, 50, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Bredemeier, K.; Warren, S.L.; Berenbaum, H.; Miller, G.A.; Heller, W. Executive function deficits associated with current and past major depressive symptoms. J. Affect. Disord. 2016, 204, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Serrano, M.J.; Pérez-García, M.; Perales, J.C.; Verdejo-García, A. Prevalence of executive dysfunction in cocaine, heroin and alcohol users enrolled in therapeutic communities. Eur. J. Pharmacol. 2010, 626, 104–112. [Google Scholar] [CrossRef]
- Coombs, D.W.; Globetti, G. Alcohol use and alcoholism in Latin America: Changing patterns and sociocultural explanations. Int. J. Addict. 1986, 21, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Nixon, K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. 2009, 44, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, B.J.; Zahs, A.; Kovacs, E.J. Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res. 2013, 35, 97–113. [Google Scholar] [PubMed]
- Palomino, D.C.; Marti, L.C. Chemokines and immunity. Einstein (Sao Paulo) 2015, 13, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000, 85, 9–18. [Google Scholar] [CrossRef]
- Manzardo, A.M.; Poje, A.B.; Penick, E.C.; Butler, M.G. Multiplex Immunoassay of Plasma Cytokine Levels in Men with Alcoholism and the Relationship to Psychiatric Assessments. Int. J. Mol. Sci. 2016, 17, 472. [Google Scholar] [CrossRef]
- Dembic, Z. The Cytokines of the Immune System; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Yanagibashi, T.; Satoh, M.; Nagai, Y.; Koike, M.; Takatsu, K. Allergic diseases: From bench to clinic - Contribution of the discovery of interleukin-5. Cytokine 2017, 98, 59–70. [Google Scholar] [CrossRef]
- Maydych, V.; Claus, M.; Watzl, C.; Kleinsorge, T. Attention to Emotional Information Is Associated With Cytokine Responses to Psychological Stress. Front. Neurosci. 2018, 12, 687. [Google Scholar] [CrossRef] [Green Version]
- Yapijakis, C.; Serefoglou, Z.; Vylliotis, A.; Nkenke, E.; Derka, S.; Vassiliou, S.; Avgoustidis, D.; Neukam, F.W.; Patsouris, E.; Vairaktaris, E. Association of polymorphisms in Tumor Necrosis Factor Alpha and Beta genes with increased risk for oral cancer. Anticancer Res. 2009, 29, 2379–2386. [Google Scholar]
- Rodríguez-Rabassa, M.; López, P.; Rodríguez-Santiago, R.E.; Cases, A.; Felici, M.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Cigarette Smoking Modulation of Saliva Microbial Composition and Cytokine Levels. Int. J. Environ. Res. Public Health 2018, 15, 2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Zhang, J.; Sun, W.; Du, G.; Zhou, G. Inflammation-related cytokines in oral lichen planus: An overview. J. Oral. Pathol. Med. 2015, 44, 1–14. [Google Scholar] [CrossRef]
- Grosveld, F.G.; Dahl, H.H.; de Boer, E.; Flavell, R.A. Isolation of beta-globin-related genes from a human cosmid library. Gene 1981, 13, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.P.; Victor, E.C.; Franco, M.M.; Fernandes, J.M.; Maor, Y.; de Andrade, M.S.; Rodrigues, V.P.; Benatti, B.B. Salivary levels of inflammatory cytokines and their association to periodontal disease in systemic lupus erythematosus patients. A case-control study. Cytokine 2016, 85, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Sheth, C.C.; López-Pedrajas, R.M.; Jovani-Sancho, M.D.M.; González-Martínez, R.; Veses, V. Modulation of salivary cytokines in response to alcohol, tobacco and caffeine consumption: A pilot study. Sci. Rep. 2018, 8, 16687. [Google Scholar] [CrossRef] [PubMed]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmune Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, S.; De Saeger, C.; Delzenne, N.; de Timary, P.; Stärkel, P. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol. Psychiatry 2014, 76, 725–733. [Google Scholar] [CrossRef]
- Brodin, P.; Davis, M.M. Human immune system variation. Nat. Rev. Immunol. 2017, 17, 21–29. [Google Scholar] [CrossRef]
- Frei, R.; Haile, S.R.; Mutsch, M.; Rohrmann, S. Relationship of Serum Vitamin D Concentrations and Allostatic Load as a Measure of Cumulative Biological Risk among the US Population: A Cross-Sectional Study. PLoS ONE 2015, 10, e0139217. [Google Scholar] [CrossRef] [Green Version]
- Tay, S.H.; Ho, C.S.; Ho, R.C.; Mak, A. 25-Hydroxyvitamin D3 Deficiency Independently Predicts Cognitive Impairment in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0144149. [Google Scholar] [CrossRef]
- Shankar, K.; Liu, X.; Singhal, R.; Chen, J.R.; Nagarajan, S.; Badger, T.M.; Ronis, M.J. Chronic ethanol consumption leads to disruption of vitamin D3 homeostasis associated with induction of renal 1,25 dihydroxyvitamin D3-24-hydroxylase (CYP24A1). Endocrinology 2008, 149, 1748–1756. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Reimers, E.; Duran-Castellon, M.C.; Lopez-Lirola, A.; Santolaria-Fernandez, F.; Abreu-Gonzalez, P.; Alvisa-Negrin, J.; Sanchez-Perez, M.J. Alcoholic myopathy: Vitamin D deficiency is related to muscle fibre atrophy in a murine model. Alcohol Alcohol. 2010, 45, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnia, J.W.; Wielders, J.P.; Lips, P.; van de Wiel, A.; Mulder, C.L.; Nieuwenhuis, K.G. Is vitamin D deficiency a confounder in alcoholic skeletal muscle myopathy? Alcohol. Clin. Exp. Res. 2013, 37, E209–E215. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D deficiency in adults: When to test and how to treat. Mayo Clin. Proc. 2010, 85, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.; Bester, J.; Kell, D.B.; Pretorius, E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev. 2015, 39, 567–591. [Google Scholar] [CrossRef] [Green Version]
- Païssé, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef]
- Abe, K.; Takahashi, A.; Fujita, M.; Imaizumi, H.; Hayashi, M.; Okai, K.; Ohira, H. Dysbiosis of oral microbiota and its association with salivary immunological biomarkers in autoimmune liver disease. PLoS ONE 2018, 13, e0198757. [Google Scholar] [CrossRef]
- Alazawi, W.; Bernabe, E.; Tai, D.; Janicki, T.; Kemos, P.; Samsuddin, S.; Syn, W.K.; Gillam, D.; Turner, W. Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver disease. PLoS ONE 2017, 12, e0185902. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Shen, L.; Zou, Y.; Qi, Z.; Yin, J.; Jiang, J.; Guo, L.; He, L.; Chen, Z.; Tang, Z.; et al. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genom. 2015, 16, 122. [Google Scholar] [CrossRef] [Green Version]
- Triches, T.C.; de Figueiredo, L.C.; Feres, M.; de Freitas, S.F.; Zimmermann, G.S.; Cordeiro, M.M. Microbial profile of root canals of primary teeth with pulp necrosis and periradicular lesion. J. Dent. Child. 2014, 81, 14–19. [Google Scholar]
- Wang, Y.; Zhang, J.; Chen, X.; Jiang, W.; Wang, S.; Xu, L.; Tu, Y.; Zheng, P.; Wang, Y.; Lin, X.; et al. Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing. Front. Microbiol. 2017, 8, 2244. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Chen, H.M.; Yang, S.F.; Liang, C.; Peng, C.Y.; Lin, F.M.; Tsai, L.L.; Wu, B.C.; Hsin, C.H.; Chuang, C.Y.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 16540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naorungroj, S.; Schoenbach, V.J.; Wruck, L.; Mosley, T.H.; Gottesman, R.F.; Alonso, A.; Heiss, G.; Beck, J.; Slade, G.D. Tooth loss, periodontal disease, and cognitive decline in the Atherosclerosis Risk in Communities (ARIC) study. Community Dent. Oral. Epidemiol. 2015, 43, 47–57. [Google Scholar] [CrossRef]
- Kaye, E.K.; Valencia, A.; Baba, N.; Spiro, A.; Dietrich, T.; Garcia, R.I. Tooth loss and periodontal disease predict poor cognitive function in older men. J. Am. Geriatr. Soc. 2010, 58, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, N.; Morikawa, M.; Okamoto, K.; Habu, N.; Iwamoto, J.; Tomioka, K.; Saeki, K.; Yanagi, M.; Amano, N.; Kurumatani, N. Relationship of tooth loss to mild memory impairment and cognitive impairment: Findings from the Fujiwara-kyo study. Behav. Brain Funct. 2010, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Panee, J.; Gerschenson, M.; Chang, L. Associations Between Microbiota, Mitochondrial Function, and Cognition in Chronic Marijuana Users. J. Neuroimmune Pharm. 2018, 13, 113–122. [Google Scholar] [CrossRef]
- Sparks Stein, P.; Steffen, M.J.; Smith, C.; Jicha, G.; Ebersole, J.L.; Abner, E.; Dawson, D. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement. 2012, 8, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Okada, H.; Murakami, S. Cytokine expression in periodontal health and disease. Crit. Rev. Oral. Biol. Med. 1998, 9, 248–266. [Google Scholar] [CrossRef] [Green Version]
- Koelman, L.; Pivovarova-Ramich, O.; Pfeiffer, A.F.H.; Grune, T.; Aleksandrova, K. Cytokines for evaluation of chronic inflammatory status in ageing research: Reliability and phenotypic characterisation. Immun. Ageing 2019, 16, 11. [Google Scholar] [CrossRef] [Green Version]
Parameter | Alcohol (n = 30) | Control (n = 20) | p-Value |
---|---|---|---|
Age in years (mean ± standard deviation) | 41.6 ± 10.6 | 37.9 ± 14.5 | 0.124 |
n (%) | n (%) | ||
Male | 18 (60%) | 10 (50%) | 0.485 |
Unemployed | 11 (37%) | 10 (50%) | 0.349 |
Retired | 4 (13%) | 4 (20%) | 0.529 |
Lower education 1 | 13 (43%) | 2 (10%) | 0.815 |
Hispanic ethnicity | 30 (100%) | 20 (100%) | - |
Tobacco smoker | 19 (63%) | 2 (10%) | 0.0002 * |
Use of drugs | 11 (37%) | 3 (15%) | 0.095 |
Use of cannabis | 9 (30%) | 3 (15%) | 0.054 |
Overweight/obese | 22 (73%) | 14 (70%) | 0.797 |
Medical condition | 18 (60%) | 11 (55%) | 0.726 |
Hypertension | 7 (23%) | 9 (45%) | 0.797 |
Hypothyroidism | 2 (7%) | 4 (20%) | 0.155 |
Asthma | 4 (13%) | 1 (5%) | 0.336 |
Psychiatric disorder | 14 (47%) | 3 (15%) | 0.021 * |
Depression | 9 (30%) | 2 (10%) | 0.035 * |
Anxiety | 11 (37%) | 2 (10%) | 0.035 * |
Bipolar | 1 (3%) | 0 (0%) | 0.409 |
Alcohol dependence | 2 (7%) | 0 (0%) | 0.239 |
Sleep difficulties | 24 (80%) | 7 (35%) | 0.001 * |
Family history of alcoholism | 22 (73%) | 9 (45%) | 0.043 * |
Alcohol breath concentration (mean ± standard deviation) | 0.006 ± 0.03 | 0.000 ± 0.00 | 0.243 |
AUDIT score (mean ± standard deviation) | 20.77 ± 7.86 | 1.65 ± 1.31 | 0.000 * |
Questionnaire | Alcohol (n = 30) | Control (n = 20) | p-Value |
---|---|---|---|
PHQ-9 Score, Median (IQR) | 8.5 (5.0–16.25) | 4.0 (2.0–8.0) | 0.007 * |
Depression Symptoms Severity Level | n (%) | n (%) | |
Minimal | 5 (17%) | 12 (60%) | |
Mild | 12 (40%) | 5 (25%) | |
Moderate | 5 (17%) | 1 (5%) | |
Mod-severe | 5 (17%) | 1 (5%) | |
Severe | 3 (10%) | 1 (5%) | |
LSAS-SR Score, Median (IQR) | 18.5 (8.0–36.3) | 24.0 (14.3–35.5) | 0.238 |
Social Phobia Severity Level | n (%) | n (%) | |
Negligible | 29 (97%) | 18 (90%) | |
Moderate | 1 (3%) | 0 (0%) | |
Marked | 0 (0%) | 2 (10%) |
Alcohol | Control | |||
---|---|---|---|---|
n | Median (IQR) | n | Median (IQR) | |
Cognitive composite 1 | 28 | 75.5 (65.3–92.0) | 19 | 100.0 (91.0–115.0) * |
Attention and executive function 1 | ||||
Flanker inhibitory | 28 | 82.5 (77.0–98.8) | 19 | 103.0 (86.0–115.0) * |
Dimensional change card sort | 29 | 95.0 (84.0–103.0) | 19 | 107.0 (103.0–114.0) * |
Salivary Cytokines | Alcohol pg/mL Median (IQR) | Control 1 pg/mL Median (IQR) |
TNF-alpha | 10.4 (2.7–26.6) | 4.9 (1.7–27.3) |
IL-12p70 | 2.9 (2.3–7.1) | 8.7 (3.3–12.7) * |
MDC | 141.0 (46.1–397.3) | 185.0 (91.7–324.0) |
IL-10 | 3.3 (3.3–3.3) | 1.7 (1.7–5.9) |
INF-γ | 2.7 (2.7–6.9) | 4.9 (1.7–6.9) |
TNF-β | 4.8 (4.8–4.8) | 1.9 (1.9–3.5) ** |
IL-1β | 52.4 (5.8–93.3) | 21.7 (5.7–209.0) |
IL-5 | 1.2 (.9–1.5) | 2.6 (1.7–3.3) ** |
IL-2 | 1.9 (1.9–1.9) | 1.1 (1.1–1.1) ** |
IL-6 | 14.2 (5.1–32.9) | 7.4 (3.2–21.4) |
IL-4 | 4.2 (4.2–5.0) | 1.1 (1.1–1.1) ** |
IL-13 | 3.1 (3.1–3.1) | 1.4 (1.4–1.9) ** |
IL-17A | 1.9 (1.7–4.6) | 3.5 (1.4–4.6) |
IL-7 | 10.1 (2.0–22.5) | 8.2 (5.4–12.8) |
GM-CSF | 10.6 (4.0–20.5) | 15.8 (4.6–34.3) |
Plasma Cytokines | Alcohol | Control |
TNF-alpha | 20.4 (14.6–28.4) | 15.92 (8.3–26.4) |
IL-12p70 | 54.7 (13.3–164.8) | 23.1 (4.4–52.1) |
MDC | 1223.0 (840.8–1789.0) | 852.0 (702.3–1031.0) * |
IL-10 | 9.0 (5.7–16.9) | 10.4 (4.5–16.3) |
INF-γ | 79.8 (27.9–141.8) | 43.4 (20.2–71.6) |
TNF-β | 9.9 (1.9–38.1) | 16.0 (2.2–118.5) |
IL-1β | 6.1 (2.4–24.1) | 7.0 (2.4–17.3) |
IL-5 | 3.3 (2.2–7.9) | 3.4 (1.6–10.6) |
IL-2 | 4.0 (1.7–24.6) | 4.8 (2.3–12.9) |
IL-6 | 8.4 (2.5–20.2) | 8.9 (2.2–42.7) |
IL-4 | 2.3 (2.3–34.7) | 2.3 (1.1–8.3) |
IL-1RA | 51.8 (38.1–88.7) | 50.7 (42.0–87.6) |
IL-13 | 7.2 (2.3–24.9) | 14.2 (4.5–41.7) |
IL-17A | 41.4 (20.4–112.0) | 23.9 (11.3–44.3) |
IL-7 | 3.6 (1.9–7.0) | 3.0 (0.6–4.9) |
GM-CSF | 35.7 (13.6–65.9) | 35.0 (7.0–68.2) |
Saliva | Alcohol Median (IQR) | Control 1 Median (IQR) |
Insulin (pg/mL) | 246.5 (124.3–643.5) | 143.0 (60.9–371.0) |
Leptin (pg/mL) | 28.7 (15.0–43.1) | 25.2 (18.2–44.3) |
Cortisol (ng/mL) | 15.9 (9.7–42.8) | 22.8 (13.8–37.8) |
Vitamin D (ng/mL) | 11.9 (6.9–23.8) | 60.0 (43.2–78.9) ** |
Plasma | Alcohol 2 Median (IQR) | Control 3 Median (IQR) |
Insulin (pg/mL) | 265.0 (105.7–487.0) | 213.5 (95.9–431.0) |
Leptin (pg/mL) | 9237.0 (3901.0–15601.5) | 3807.5 (1681.3–17824.0) |
Cortisol (ng/mL) | 1.64 (0.44–15.9) | 3.5 (0.62–10.4) |
Vitamin D (ng/mL) | 45.78 (30.2–81.4) | 18.4 (11.9–63.4) * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rabassa, M.; López, P.; Sánchez, R.; Hernández, C.; Rodríguez, C.; Rodríguez-Santiago, R.E.; Orengo, J.C.; Green, V.; Yamamura, Y.; Rivera-Amill, V. Inflammatory Biomarkers, Microbiome, Depression, and Executive Dysfunction in Alcohol Users. Int. J. Environ. Res. Public Health 2020, 17, 689. https://doi.org/10.3390/ijerph17030689
Rodríguez-Rabassa M, López P, Sánchez R, Hernández C, Rodríguez C, Rodríguez-Santiago RE, Orengo JC, Green V, Yamamura Y, Rivera-Amill V. Inflammatory Biomarkers, Microbiome, Depression, and Executive Dysfunction in Alcohol Users. International Journal of Environmental Research and Public Health. 2020; 17(3):689. https://doi.org/10.3390/ijerph17030689
Chicago/Turabian StyleRodríguez-Rabassa, Mary, Pablo López, Raphael Sánchez, Cyanela Hernández, Cesarly Rodríguez, Ronald E. Rodríguez-Santiago, Juan C. Orengo, Vivian Green, Yasuhiro Yamamura, and Vanessa Rivera-Amill. 2020. "Inflammatory Biomarkers, Microbiome, Depression, and Executive Dysfunction in Alcohol Users" International Journal of Environmental Research and Public Health 17, no. 3: 689. https://doi.org/10.3390/ijerph17030689
APA StyleRodríguez-Rabassa, M., López, P., Sánchez, R., Hernández, C., Rodríguez, C., Rodríguez-Santiago, R. E., Orengo, J. C., Green, V., Yamamura, Y., & Rivera-Amill, V. (2020). Inflammatory Biomarkers, Microbiome, Depression, and Executive Dysfunction in Alcohol Users. International Journal of Environmental Research and Public Health, 17(3), 689. https://doi.org/10.3390/ijerph17030689