Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaffney-Stomberg, E. The Impact of trace minerals on bone metabolism. Biol. Trace Elem. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev. Miner. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The effect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2011. [Google Scholar] [CrossRef] [PubMed]
- Roczniak, W.; Brodziak-Dopierała, B.; Cipora, E.; Jakóbik-Kolon, A.; Kluczka, J.; Babuśka-Roczniak, M. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint. Boil. Trace Element Res. 2017, 178, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Rojo, R.; Pérez-Granados, A.M.; Toxqui, L.; Zazo, P.; de la Piedra, C.; Vaquero, M.P. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur. J. Nutr. 2013. [Google Scholar] [CrossRef] [Green Version]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of Iron on Bone Homeostasis. Pharm. 2018, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Katsumata, S.; Katsumata-Tsuboi, R.; Uehara, M.; Suzuki, K. Severe iron deficiency decreases both bone formation and bone resorption in rats. J. Nutr. 2009. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.M.; Stoecker, B.; Plattner, A.; Jennings, D.; Haub, M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr. 2004, 134, 3061–3067. [Google Scholar] [CrossRef] [Green Version]
- Parelman, M.; Stoecker, B.; Baker, A.; Medeiros, D. Iron Restriction Negatively Affects Bone in Female Rats and Mineralization of hFOB Osteoblast Cells. Exp. Boil. Med. 2006, 231, 378–386. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hagiwara, H. Excess iron inhibits osteoblast metabolism. Toxicol. Lett. 2009, 191, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Jian, J.; Abramson, S.B.; Huang, X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 2011, 26, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Messer, J.G.; Kilbarger, A.K.; Erikson, K.M.; Kipp, D.E. Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 2009, 45, 972–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.-J.; Lee, S.H.; Koh, J.-M.; Kim, G.S. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008–2010). Osteoporos. Int. 2013, 24, 2627–2637. [Google Scholar] [CrossRef]
- Kim, B.-J.; Ahn, S.H.; Bae, S.J.; Kim, E.H.; Lee, S.-H.; Kim, H.-K.; Choe, J.W.; Koh, J.-M.; Kim, G.S. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: A 3-year retrospective longitudinal study. J. Bone Miner. Res. 2012, 27, 2279–2290. [Google Scholar] [CrossRef]
- Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Mayer-Kuckuk, P.; Doty, S.B.; Grady, R.W.; Giardina, P.J.; et al. Bone loss caused by iron overload in a murine model: Importance of oxidative stress. Blood 2010, 116, 2582–2589. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Zavaczki, E.; Balla, G.; Balla, J. Ferritin ferroxidase activity: A potent inhibitor of osteogenesis. J. Bone Miner. Res. 2010. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Fowler, B.A.; Nordberg, G.F.; Nordberg, M.; Friberg, L. Handbook on the Toxicology of Metals; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Kowol, J. The occurrence of nickel and other elements in tissues of the hip joint. Ecotoxicol. Environ. Saf. 2011, 74, 630–635. [Google Scholar] [CrossRef]
- Morais, S.; Sousa, J.; Fernandes, M.; Carvalho, G. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomater. 1998, 19, 13–21. [Google Scholar] [CrossRef]
- Kanaji, A.; Orhue, V.; Caicedo, M.S.; Virdi, A.S.; Sumner, D.R.; Hallab, N.J.; Yoshiaki, T.; Sena, K. Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro. J. Orthop. Surg. Res. 2014, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, J.; Mandalunis, P.M. A Review of Metal Exposure and Its Effects on Bone Health. J. Toxicol. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Hathcock, J.N. Vitamin and Mineral Safety, 2nd ed.; Council for Responsible Nutrition: Washington, DC, USA, 2004. [Google Scholar]
- Parry, N.M.A.; Phillippo, M.; Reid, M.D.; McGaw, B.A.; Flint, D.J.; Loveridge, N. Molybdenum-induced changes in the epiphyseal growth plate. Calcif. Tissue Int. 1993, 53, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Barrio, D.; Etcheverry, S. Vanadium and bone development: Putative signaling pathwaysThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can. J. Physiol. Pharmacol. 2006, 84, 677–686. [Google Scholar] [CrossRef]
- Dziga, D. Influence of vanadium on sugar metabolism and other processes in the cell. Post. Biol. Kom. 2002, 29, 579–594. [Google Scholar]
- Armour, K.E. Defective Bone Formation and Anabolic Response to Exogenous Estrogen in Mice with Targeted Disruption of Endothelial Nitric Oxide Synthase. Endocrinology 2001, 142, 760–766. [Google Scholar] [CrossRef]
- Carnevale, V.; Romagnoli, E.; D’Erasmo, E. Skeletal involvement in patients with diabetes mellitus. Diabetes/Metabolism Res. Rev. 2004, 20, 196–204. [Google Scholar] [CrossRef]
- Lau, K.-H.W.; Tanimoto, H.; Baylink, D.J. Vanadate Stimulates Bone Cell Proliferation and Bone Collagen Synthesis in Vitro *. Endocrinology 1988, 123, 2858–2867. [Google Scholar] [CrossRef]
- Laizé, V.; Tiago, D.M.; Aureliano, M.; Cancela, M.L. New insights into mineralogenic effects of vanadate. Cell. Mol. Life Sci. 2009, 66, 3831–3836. [Google Scholar] [CrossRef]
- Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of thirty elements on bone metabolism. J. Trace Elements Med. Boil. 2015, 32, 86–106. [Google Scholar] [CrossRef]
- Senczuk, W. Toxicology; Państwowy Zakład Wydawnictw Lekarskich: Warsaw, Poland, 2012. [Google Scholar]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 2012, 59, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Ciosek, Z.; Zietek, P.; Karaczun, M.; Pilarczyk, B.; Tomza-Marciniak, A.; Podlasinska, J.; Kalisinska, E.; et al. Effects of biological factors and health condition on mercury and selenium concentrations in the cartilage, meniscus and anterior cruciate ligament. J. Trace Elements Med. Boil. 2017, 44, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Zietek, P.; Karaczun, M.; Prokopowicz, A.; Kupnicka, P.; Ciosek, Z. Calcium, magnesium, zinc and lead concentrations in the structures forming knee joint in patients with osteoarthritis. J. Trace Elements Med. Boil. 2018, 50, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Kot, K.; Karaczun, M.; Ziętek, P.; Kupnicka, P.; Szylińska, A.; Bosiacki, M.; Rotter, I. Phosphorus concentration in knee joint structures of patients following knee replacement surgery. Int. J. Environ. Res. Public Health 2019, 16, 525. [Google Scholar] [CrossRef] [Green Version]
- MacMullan, P.; McCarthy, G.M. The meniscus, calcification and osteoarthritis: A pathologic team. Arthritis Res. Ther. 2010, 12, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaabar, W.; Daar, E.; Gundogdu, O.; Jenneson, P.; Farquharson, M.; Webb, M.; Jeynes, C.; Bradley, D. Metal deposition at the bone–cartilage interface in articular cartilage. Appl. Radiat. Isot. 2009, 67, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Perkhulyn, N.V.; Rovenko, B.M.; Lushchak, O.V.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Exposure to sodium molybdate results in mild oxidative stress inDrosophila melanogaster. Redox Rep. 2017, 22, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Terpilowska, S.; Siwicki, A.K. Pro- and antioxidant activity of chromium(III), iron(III), molybdenum(III) or nickel(II) and their mixtures. Chem. Interactions 2019, 298, 43–51. [Google Scholar] [CrossRef]
- Lepetsos, P.; Papavassiliou, A.G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016, 1862, 576–591. [Google Scholar] [CrossRef]
- Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel impact on human health: An intrinsic disorder perspective. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2016, 1864, 1714–1731. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Zioła-Frankowska, A.; Kubaszewski, Ł.; Rogala, P.; Frankowski, M. Urban and rural area differences in the interaction between oxidative process elements in human femoral bone. Environ. Sci. Pollut. Res. 2018, 25, 30475–30487. [Google Scholar]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 2010. [Google Scholar] [CrossRef]
- Lanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.I.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A. Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. J. Trace Elements Med. Boil. 2012, 26, 20–25. [Google Scholar] [CrossRef]
- Budis, H.; Kalisinska, E.; Lanocha, N.; Kosik-Bogacka, D.; Sokolowski, S.; Dobiecki, K.; Kolodziej, L.; Bohatyrewicz, A. The concentration of manganese, iron, and strontium in hip joint bone obtained from patients undergoing hip replacement surgery. J. Trace Elements Med. Boil. 2014, 28, 39–44. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Roczniak, W.; Jakóbik-Kolon, A.; Kluczka, J.; Koczy, B.; Kwapuliński, J.; Babuśka-Roczniak, M. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology. Adv. Clin. Exp. Med. 2017, 26, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.W.; Kuo, S.M.; Wu, C.C.; Chiu, M.C. Determination of fourteen elements in bone samples using inductively coupled plasma (ICP) analysis. Mid. Taiwan J. Med. 2001, 6, 125–132. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Wiechuła, D. The content of manganese and iron in hip joint tissue. J. Trace Elements Med. Boil. 2013, 27, 208–212. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapulinski, J.; Okrajni, J.; Kowol, J.; Kosterska, E.; Suchy, A.; Sobczyk, K. The estimation of nickel interaction with other elements in an osseous tissue of femur head. Acta Toxicol. 2007, 15, 69–74. [Google Scholar]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Kowalski, A.; Rogala, P.; Strzyzewski, W.; Łabędź, W.; Uklejewski, R.; Novotný, K.; Kanický, V.; et al. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis. BioMed Res. Int. 2015, 2015, 1–23. [Google Scholar]
- Łanocha-Arendarczyk, N.; Kalisinska, E.; Kosik-Bogacka, D.; Budis, H.; Lewicka, K.; Sokołowski, S.; Dobiecki, K.; Kołodziej, Ł. Effect of environmental parameters on the concentration of nickel (Ni) in bones of the hip joint from patients with osteoarthritis. J. Pre-Clin. Clin. Res. 2016, 10, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kubaszewski, Ł.; Zioła-Frankowska, A.; Frankowski, M.; Rogala, P.; Gasik, Z.; Kaczmarczyk, J.; Nowakowski, A.; Dabrowski, M.; Labedz, W.; Miekisiak, G.; et al. Comparison of trace element concentration in bone and intervertebral disc tissue by atomic absorption spectrometry techniques. J. Orthop. Surg. Res. 2014, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H. A Compendium of Geochemistry: From Solar Nebula to the Human Brain; Princeton University Press: New York, NY, USA, 2000. [Google Scholar]
- Lewis, R.C.; Johns, L.E.; Meeker, J.D. Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007–2010. Chemosphere 2016, 164, 677–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bashaireh, A.M.; Haddad, L.G.; Weaver, M.; Chengguo, X.; Kelly, D.L.; Yoon, S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compston, J. Editorial: Smoking and the skeleton. J. Clin. Endocrinol. Metab. 2007, 92, 428–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- General, U.S.S. The Health Consequences of Smoking—50 Years of progress: A Report of the Surgeon General. In PsycEXTRA Dataset; American Psychological Association (APA): Washington, DC, USA, 2014; Volume 17. [Google Scholar]
- Kwapulinski, J.; Nogaj, E.; Babula, M.; Suflita, M. The effect of passive smoking on the nickel content in the pharyngeal tonsils in children. Environ. Med. 2010, 13, 23–30. [Google Scholar]
- Sampson, H.W. Alcohol, osteoporosis, and bone regulating hormones. Alcohol. Clin. Exp. Res. 1997, 21, 400–403. [Google Scholar] [CrossRef]
- Kupraszewicz, E.; Brzóska, M.M. Excessive ethanol consumption under exposure to lead intensifies disorders in bone metabolism: A study in a rat model. Chem. Interactions 2013, 203, 486–501. [Google Scholar] [CrossRef]
- Noor, Z.; Sumitro, S.B.; Hidayat, M.; Rahim, A.H.; Sabarudin, A.; Umemura, T. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Sci. World J. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Kolodziej, L.; Budis, H.; Safranow, K.; Kot, K.; Ciosek, Z.; Tomska, N.; et al. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rahil-Khazen, R.; Bolann, B.J.; Myking, A.; Ulvik, R.J. Multielement analysis of trace element levels in huan autopsy tissues by using inductivelyZ coupled atomic emission spectrometry technique (ICP_AES). J. Trace Elem. Med. Biol. 2002, 16, 15–25. [Google Scholar] [CrossRef]
Chemical Elements | NIST 8414 (Bovine Muscle) | ||
---|---|---|---|
Certified | Measured (n = 9) | Recovery (%) | |
Fe | 71.20 ± 9.20 | 64.27 ± 2.45 | 90% |
Ni | 0.05 ± 0.04 | 0.04 ± 0.01 | 80% |
Mo | 0.08 ± 0.06 | 0.10 ± 0.02 | 125% |
V | 0.005 | 0.0045 ± 0.005 | 90% |
Concentration of Elements Expressed as mg/kg dw | ||||
---|---|---|---|---|
Fe | Ni | Mo | V | |
Total (n = 46) | ||||
Spongy bone (n = 44) | ||||
AM ± SD | 56.032 ± 37.011 | 4.752 ± 14.600 | 0.935 ± 0.505 | 0.022 ± 0.001 |
Med | 44.885 | 1.920 | 0.928 | 0.022 |
Range | 14.191–169.957 | 0.018–98.180 | 0.021–2.377 | 0.020–0.028 |
Cartilage (n = 46) | ||||
AM ± SD | 72.483 ± 63.779 | 3.909 ± 3.895 | 1.918 ± 5.541 | 0.025 ± 0.009 |
Med | 55.086 | 2.405 | 1.014 | 0.022 |
Range | 10.444–393.624 | 0.020–19.402 | 0.020–38.419 | 0.020–0.067 |
Meniscus (n = 46) | ||||
AM ± SD | 38.163 ± 28.686 | 18.708 ± 14.291 | 51.383 ± 46.872 | 0.101 ± 0.059 |
Med | 29.592 | 14.970 | 41.182 | 0.082 |
Range | 7.792–166.180 | 0.080–71.738 | 0.063–274.449 | 0.052–0.338 |
Anterior cruciate ligament (n = 46) | ||||
AM ± SD | 89.771 ± 57.648 | 15.833 ± 8.998 | 42.410 ± 26.214 | 0.086 ± 0.030 |
Med | 72.919 | 14.984 | 43.393 | 0.086 |
Range | 23.598–243.982 | 0.075–43.887 | 0.280–104.450 | 0.045–0.163 |
Infrapatellar fat pad (n = 46) | ||||
AM ± SD | 50.156 ± 59.632 | 8.310 ± 13.796 | 7.498 ± 14.621 | 0.077 ± 0.067 |
Med | 30.612 | 2.245 | 2.166 | 0.065 |
Range | 12.530–367.259 | 0.034–82.599 | 0.051–58.665 | 0.034–0.505 |
K–W test | ||||
H | 45 | 81 | 118 | 164 |
p | <0.01 | <0.01 | <0.01 | <0.01 |
Female (n = 34) | ||||
Spongy bone (n = 32) | ||||
AM ± SD | 55.004 ± 32.727 | 2.338 ± 2.338 | 0.871 ± 0.497 | 0.022 ± 0.001 |
Med | 51.708 | 1.492 | 0.822 | 0.021 |
Range | 14.191–157.291 | 0.018–7.360 | 0.021–2.377 | 0.020–0.024 |
Cartilage (n = 34) | ||||
AM ± SD | 72.217 ± 70.332 | 3.559 ± 4.089 | 2.104 ± 6.349 | 0.025 ± 0.009 |
Med | 51.848 | 1.897 | 0.991 | 0.022 |
Range | 10.444–393.624 | 0.020–19.402 | 0.021–38.419 | 0.020–0.067 |
Meniscus (n = 34) | ||||
AM ± SD | 37.374 ± 31.420 | 18.707 ± 15.326 | 53.566 ± 49.187 | 0.100 ± 0.063 |
Med | 26.117 | 14.185 | 43.244 | 0.080 |
Range | 7.792–166.180 | 0.088–71.738 | 0.063–274.449 | 0.052–0.338 |
Anterior cruciate ligament (n = 34) | ||||
AM ± SD | 88.186 ± 58.304 | 16.436 ± 9.407 | 46.214 ± 27.829 | 0.089 ± 0.032 |
Med | 66.169 | 14.832 | 47.489 | 0.086 |
Range | 23.598–230.160 | 0.087–43.887 | 0.280–104.450 | 0.045–0.163 |
Infrapatellar fat pad (n = 34) | ||||
AM ± SD | 43.875 ± 37.787 | 5.794 ± 7.545 | 7.372 ± 15.292 | 0.070 ± 0.017 |
Med | 30.612 | 1.689 | 2.224 | 0.070 |
Range | 12.593–197.711 | 0.034–27.823 | 0.051–58.665 | 0.034–0.097 |
Male (n = 12) | ||||
Spongy bone (n = 12) | ||||
AM ± SD | 58.774 ± 45.189 | 11.187 ± 26.336 | 1.105 ± 0.466 | 0.023 ± 0.002 |
Med | 38.345 | 3.688 | 1.262 | 0.022 |
Range | 18.805–169.957 | 0.021–98.180 | 0.480–1.928 | 0.020–0.028 |
Cartilage (n = 12) | ||||
AM ± SD | 73.236 ± 35.188 | 4.903 ± 2.864 | 1.391 ± 0.746 | 0.023 ± 0.005 |
Med | 68.112 | 6.496 | 1.739 | 0.021 |
Range | 26.987–146.683 | 0.081–8.353 | 0.020–2.168 | 0.020–0.039 |
Meniscus (n = 12) | ||||
AM ± SD | 40.398 ± 16.790 | 18.713 ± 10.021 | 45.198 ± 36.501 | 0.102 ± 0.041 |
Med | 35.061 | 20.759 | 41.182 | 0.096 |
Range | 16.844–70.850 | 0.080–38.693 | 0.414–105.537 | 0.065–0.222 |
Anterior cruciate ligament (n = 12) | ||||
AM ± SD | 94.263 ± 52.949 | 14.126 ± 6.993 | 31.633 ± 15.014 | 0.078 ± 0.017 |
Med | 52.949 | 15.264 | 38.677 | 0.081 |
Range | 45.687–243.982 | 0.075–23.409 | 0.479–49.297 | 0.053–0.102 |
Infrapatellar fat pad (n = 12) | ||||
AM ± SD | 67.952 ± 94.132 | 15.439 ± 21.993 | 7.888 ± 12.306 | 0.098 ± 0.124 |
Med | 33.608 | 11.044 | 2.166 | 0.057 |
Range | 12.529–367.259 | 0.036–82.599 | 0.474–39.848 | 0.036–0.505 |
Female vs. Male | ||||
Spongy bone | ||||
U | NS | NS | NS | NS |
p | ||||
Cartilage | ||||
U | NS | NS | NS | NS |
p | ||||
Meniscus | ||||
U | NS | NS | NS | NS |
p | ||||
Anterior cruciate ligament | ||||
U | NS | NS | 119 | NS |
p | 0.03 | |||
Infrapatellar fat pad | ||||
U | NS | NS | NS | NS |
SB | C | ACL | M | IFP | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | ||
SB | Fe | - | |||||||||||||||||||
Ni | 0.37 | - | |||||||||||||||||||
Mo | NS | 0.37 | - | ||||||||||||||||||
V | NS | NS | NS | - | |||||||||||||||||
C | Fe | NS | NS | NS | NS | - | |||||||||||||||
Ni | NS | NS | 0.37 | NS | 0.74 | - | |||||||||||||||
Mo | NS | NS | NS | NS | NS | 0.31 | - | ||||||||||||||
V | NS | NS | NS | NS | NS | NS | 0.53 | - | |||||||||||||
ACL | Fe | NS | NS | NS | NS | 0.66 | 0.40 | NS | NS | - | |||||||||||
Ni | NS | NS | NS | NS | NS | NS | NS | NS | NS | - | |||||||||||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.90 | - | ||||||||||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.91 | 0.85 | - | |||||||||
M | Fe | 0.37 | NS | NS | NS | NS | NS | NS | NS | 0.37 | NS | NS | NS | - | |||||||
Ni | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | - | |||||||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.41 | 0.35 | 0.35 | NS | 0.73 | - | ||||||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.63 | 0.50 | - | |||||
IFP | Fe | NS | NS | NS | NS | NS | NS | NS | NS | 0.38 | NS | NS | NS | NS | NS | 0.31 | NS | - | |||
Ni | NS | 0.32 | 0.45 | NS | NS | 0.46 | 0.38 | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.36 | - | |||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.45 | 0.42 | - | ||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.34 | 0.36 | NS | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, K.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Ciosek, Ż.; Łanocha-Arendarczyk, N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. Int. J. Environ. Res. Public Health 2020, 17, 813. https://doi.org/10.3390/ijerph17030813
Kot K, Kosik-Bogacka D, Ziętek P, Karaczun M, Ciosek Ż, Łanocha-Arendarczyk N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. International Journal of Environmental Research and Public Health. 2020; 17(3):813. https://doi.org/10.3390/ijerph17030813
Chicago/Turabian StyleKot, Karolina, Danuta Kosik-Bogacka, Paweł Ziętek, Maciej Karaczun, Żaneta Ciosek, and Natalia Łanocha-Arendarczyk. 2020. "Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint" International Journal of Environmental Research and Public Health 17, no. 3: 813. https://doi.org/10.3390/ijerph17030813
APA StyleKot, K., Kosik-Bogacka, D., Ziętek, P., Karaczun, M., Ciosek, Ż., & Łanocha-Arendarczyk, N. (2020). Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. International Journal of Environmental Research and Public Health, 17(3), 813. https://doi.org/10.3390/ijerph17030813