Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Short-Term Leaching Test
2.2. Long-Term Solidification Performance Evaluation
2.3. Permeability and Porosity of the CPB
2.4. Tailings
3. Results and Discussion
3.1. Ion Leaching from the CPB in the Short-Term
3.1.1. Dissolved Zn2+ in Leachate
3.1.2. Dissolved Pb2+ in Leachate
3.1.3. Dissolved Cd2+ in Leachate
3.1.4. Dissolved As5+ and Co2+ in Leachate
3.2. Long-Term Leaching Performance
Mine Location
4. Discussion
4.1. Porosity and Permeability of CPB
4.1.1. Porosity
4.1.2. Permeability
4.1.3. Solidification Mechanism
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Zhang, Y.; Zhang, X.; Qian, L.; Sun, M.; Yang, Y.; Qiu, G. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner. Eng. 2019, 136, 140–154. [Google Scholar] [CrossRef]
- Yin, S.; Wang, L.; Wu, A.; Kabwe, E.; Chen, X.; Yan, R. Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria. J. Clean. Prod. 2018, 189, 746–753. [Google Scholar] [CrossRef]
- Sun, Q.; Li, B.; Tian, S.; Cai, C.; Xia, Y. Creep properties of geopolymer cemented coal gangue-fly ash backfill under dynamic disturbance. Constr. Build. Mater. 2018, 191, 644–654. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, S. Design of roof-contacted filling ratio and filling holes in the sublevel open stoping with the subsequent filling method. Int. J. Min. Miner. Eng. 2017, 8, 265–279. [Google Scholar] [CrossRef]
- CNN. 2019. Available online: https://edition.cnn.com/2019/01/30/americas/brazil-dam-collapse-vale-mining-regulations-intl/index.html (accessed on 3 December 2019).
- Han, H.; Sun, W.; Hu, Y.; Jia, B.; Tang, H. Anglesite and silver recovery from jarosite residues through roasting and sulifidation-flotation in zinc hydrometallurgy. J. Hazard. Mater. 2014, 278, 49–54. [Google Scholar] [CrossRef]
- Nhantumbo, C.M.C.; Larsson, R.; Juízo, D.; Larson, M. Key Issues for Water Quality Monitoring in the Zambezi River Basin in Mozambique in the Context of Mining Development. J. Water Resour. Prot. 2015, 7, 430. [Google Scholar] [CrossRef] [Green Version]
- Onuaguluchi, O.; Eren, Ö. Reusing copper tailings in concrete: Corrosion performance and socioeconomic implications for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2016, 112, 420–429. [Google Scholar] [CrossRef]
- Wu, B.; Li, X.G.; Ma, B.; Zhang, M. Solidification of heavy metals in ettringite and its stability research. In Proceedings of the 2nd International Conference on Microstructure-Related Durability of Cementitious Composites, Amsterdam, The Netherlands, 11–13 April 2012; pp. 1–9. [Google Scholar]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. Specimen size effect on strength behaviour of cemented paste backfills subjected to different placement conditions. Eng. Geol. 2015, 185, 52–62. [Google Scholar] [CrossRef]
- Lu, H.; Wei, F.; Tang, J.; Giesy, J.P. Leaching of metals from cement under simulated environmental conditions. J. Environ. Manag. 2016, 169, 319–327. [Google Scholar] [CrossRef]
- Fall, M.; Benzaazoua, M.; Saa, E.G. Mix proportioning of underground cemented tailings backfill. Tunn. Undergr. Space Technol. 2008, 23, 80–90. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H.; Hou, K. Control of waste rock-tailings pastes backfill for active mining subsidence areas. J. Clean. Prod. 2018, 171, 567–579. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Qi, C.; Fourie, A.; Xiao, C. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 2018, 186, 418–429. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Wang, X.; Xiao, C.; Hu, Q. A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system. Environ. Earth. Sci. 2016, 75, 1099. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- Moruzzi, R.B.; de Oliveira, A.L.; da Conceição, F.T.; Gregory, J.; Campos, L.C. Fractal dimension of large aggregates under different flocculation conditions. Sci. Total Environ. 2017, 609, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Rashed, M.N. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J. Hazard. Mater. 2010, 178, 739–746. [Google Scholar] [CrossRef]
- Sun, Q.; Tian, S.; Sun, Q.; Li, B.; Cai, C.; Xia, Y.; Mu, Q. Preparation and microstructure of fly ash geopolymer paste backfill material. J. Clean. Prod. 2019, 225, 376–390. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, C.; Qi, C.; Zhang, B.; Song, K.I. A microstructural hydration model for cemented paste backfill considering internal sulfate attacks. Constr. Build. Mater. 2019, 211, 99–108. [Google Scholar] [CrossRef]
- Dell’Orso, M.; Mangialardi, T.; Paolini, A.E.; Piga, L. Evaluation of the leachability of heavy metals from cement-based materials. J. Hazard. Mater. 2012, 227, 1–8. [Google Scholar] [CrossRef]
- Guo, B.; Liu, B.; Yang, J.; Zhang, S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017, 193, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Genesys, N.; Aouad, G.; Damidot, D. Managing trace elements in Portland cement–Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010, 32, 563–570. [Google Scholar]
- Giergiczny, Z.; Król, A. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J. Hazard. Mater. 2008, 160, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, H.; Al-Tabbaa, A. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils. J. Hazard. Mater. 2014, 278, 144–151. [Google Scholar] [CrossRef]
- Wang, Y.; Han, F.; Mu, J. Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash-based geopolymers. Constr. Build. Mater. 2018, 160, 818–827. [Google Scholar] [CrossRef]
- Vollbrecht, A.; Brameshuber, W. Binding and leaching of trace elements in Portland cement pastes. Cem. Concr. Res. 2016, 79, 76–92. [Google Scholar] [CrossRef]
- Li, C.; Wen, Q.; Hong, M.; Liang, Z.; Zhuang, Z.; Yu, Y. Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components. Constr. Build. Mater. 2017, 134, 443–451. [Google Scholar] [CrossRef]
- Spacek, O.; Kříbek, B.; Mihaljevič, M.; Majer, V.; Veselovský, F.; Vencelides, Z.; Nyambe, I. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 2012, 112, 174–188. [Google Scholar]
- Pettersson, U.T.; Ingri, J. The geochemistry of Co and Cu in the Kafue River as it drains the Copperbelt mining area, Zambia. Chem. Geol. 2001, 177, 399–414. [Google Scholar] [CrossRef]
- Ntengwe, F.W.; Maseka, K.K. The impact of effuents containing zinc and nickel metals on stream and river water bodies: The case of Chambishi and Mwambashi streams in Zambia. Phys. Chem. Earth 2006, 31, 814–820. [Google Scholar] [CrossRef]
- Environment Agency EA NEN 7375-2004. Leaching Characteristics of Moulded or Monolithic Building and Waste Materials. Determination of Leaching of Inorganic Components with the Diffusion Test; Based on a translation of the Netherlands Normalisation Institute Standard, Version 1.0; Environment Agency: Bristol, UK, 2004.
- Yin, S.; Wu, A.; Hu, K.; Wang, Y.; Xue, Z. Visualization of flow behaviour during bioleaching of waste rock dumps under saturated and unsaturated conditions. Hydrometallurgy 2013, 133, 1–6. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, S.; Yang, Y.; Chen, X. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
- Nachiyunde, K.; Ikeda, H.; Tanaka, K.; Kozaki, D. Evaluation of portable water in five provinces of Zambia using a water pollution index. Afr. J. Environ. Sci. Technol. 2013, 7, 14–29. [Google Scholar]
- Von der Heyden, C.J.; New, M.G. Groundwater pollution on the Zambian Copperbelt: Deciphering the source and the risk. Sci. Total Environ. 2004, 327, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Psutka, R.; Peletz, R.; Michelo, S.; Kelly, P.; Clasen, T. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia. Environ. Sci. Technol. 2011, 45, 6095–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.K. Leaching behaviour of fly ash used for adsorption of different metal ions from the aqueous solution after cement-based solidification. J. Mater. Eng. Struct. 2019, 5, 419–426. [Google Scholar]
- Niu, M.; Li, G.; Wang, Y.; Li, Q.; Han, L.; Song, Z. Comparative study of immobilization and mechanical properties of sulfoaluminate cement and ordinary Portland cement with different heavy metals. Constr. Build. Mater. 2018, 193, 332–343. [Google Scholar] [CrossRef]
- Cao, X.; Wang, W.; Ma, R.; Sun, S.; Lin, J. Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions. Environ. Pollut. 2019, 253, 171–180. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef]
- Clark, S.M.; Colas, B.; Kunz, M.; Speziale, S.; Monteiro, P.J. Effect of pressure on the crystal structure of ettringite. Cem. Concr. Res. 2008, 38, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N.; Sharygin, V.V. Natural bentorite—Cr3+ derivate of ettringite: Determination of crystal structure. Phys. Chem. Miner. 2019, 46, 553–570. [Google Scholar] [CrossRef]
- Jiao, H.Z.; Wang, S.; Wu, A.; Shen, H.M.; Wang, J.D. Cementitious property of NaAlO2-activated Ge slag as cement supplement. Int. J. Miner. Metall. Mater. 2019, 26, 1594–1603. [Google Scholar] [CrossRef]
- Jiao, H.; Wu, Y.; Chen, X.; Yang, Y. Flexural toughness of basalt fibre-reinforced shotcrete and industrial-scale testing. Adv. Mater. Sci. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
Component | Co2+ | Zn2+ | Pb2+ | As5+ | Cd2+ |
---|---|---|---|---|---|
Content | 390.26 | 68.30 | 72.31 | 70.70 | 69.63 |
Sample | Co2+ | Zn2+ | Pb2+ | As5+ | Cd2+ |
---|---|---|---|---|---|
−116 m 1# mine water | 0.0082 | 0.49 | 0.236 | 0.049 | <0.001 |
−200 m 2# mine water | 0.0078 | 0.36 | 0.168 | 0.045 | <0.001 |
−264 m 3# mine water | 0.0013 | 0.26 | 0.114 | 0.038 | <0.001 |
Regulated value [Nachiyunde et al., 2013; 2013a] | 0.01 | 5 | 0.05 | 0.058 | 0.005 |
Background water [Psutka et al., 2011] | 0.0066 | 0.0239 | 0.00042 | 0.58 | 0.00159 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhao, T.; Jiao, H.; Wang, Y.; Li, H. Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions. Int. J. Environ. Res. Public Health 2020, 17, 814. https://doi.org/10.3390/ijerph17030814
Yang Y, Zhao T, Jiao H, Wang Y, Li H. Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions. International Journal of Environmental Research and Public Health. 2020; 17(3):814. https://doi.org/10.3390/ijerph17030814
Chicago/Turabian StyleYang, Yixuan, Tongqian Zhao, Huazhe Jiao, Yunfei Wang, and Haiyan Li. 2020. "Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions" International Journal of Environmental Research and Public Health 17, no. 3: 814. https://doi.org/10.3390/ijerph17030814
APA StyleYang, Y., Zhao, T., Jiao, H., Wang, Y., & Li, H. (2020). Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions. International Journal of Environmental Research and Public Health, 17(3), 814. https://doi.org/10.3390/ijerph17030814